Variational methods for a resonant problem with the $p$-Laplacian in $\Bbb R^N$
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The solvability of the resonant Cauchy problem $$ - \Delta_p u = \lambda_1 m(|x|) |u|^{p-2} u + f(x) \quad\hbox{in } \mathbb{R}^N ;\quad u\in D^{1,p}(\mathbb{R}^N), $$ in the entire Euclidean space mathbbR^N ( $N\geq 1$) is investigated as a part of the Fredholm alternative at the first (smallest) eigenvalue $\lambda_1$ of the positive $p$-Laplacian $-\Delta_p$ on $D^{1,p}(\mathbb{R}^N)$ relative to the weight $m(|x|)$. Here, $p$ stands for the $p$-Laplacian, $m\colon \mathbb{R}_+\to \mathbb{R}_+$ is a weight function assumed to be radially symmetric, $m\not\equiv 0$ in $\mathbb{R}_+$, and $f\colon \mathbb{R}^N\to \mathbb{R}$ is a given function satisfying a suitable integrability condition. The weight $m(r)$ is assumed to be bounded and to decay fast enough as $r\to +\infty$. Let $\varphi_1$ denote the (positive) eigenfunction associated with the (simple) eigenvalue $\lambda_1$ of $-\Delta_p$. If $\int_{\mathbb{R}^N} f\varphi_1 \,{\rm d}x =0$, we show that problem has at least one solution $u$ in the completion $D^{1,p}(\mathbb{R}^N)$ of $C_{\rm c}^1(\mathbb{R}^N)$ endowed with the norm $(\int_{\mathbb{R}^N} |\nabla u|^p \,{\rm d}x)^{1/p}$. To establish this existence result, we employ a saddle point method if $1 less than p less than 2$, and an improved Poincare inequality if $2\leq p less than N$. We use weighted Lebesgue and Sobolev spaces with weights depending on $\varphi_1$. The asymptotic behavior of $\varphi_1(x)= \varphi_1(|x|)$ as $|x|\to \infty$ plays a crucial role.
Classification : 35P30, 35J20, 47J10, 47J30
Keywords: p-Laplacian, degenerate quasilinear Cauchy problem, Fredholm alternative, (p-1)-homogeneous problem at resonance, saddle point geometry, improved Poincarè inequality, second-order Taylor formula
@article{EJDE_2004__2004__a163,
     author = {Alziary, Benedicte and Fleckinger, Jacqueline and Tak\'a\v{c}, Peter},
     title = {Variational methods for a resonant problem with the $p${-Laplacian} in $\Bbb R^N$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a163/}
}
TY  - JOUR
AU  - Alziary, Benedicte
AU  - Fleckinger, Jacqueline
AU  - Takáč, Peter
TI  - Variational methods for a resonant problem with the $p$-Laplacian in $\Bbb R^N$
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a163/
LA  - en
ID  - EJDE_2004__2004__a163
ER  - 
%0 Journal Article
%A Alziary, Benedicte
%A Fleckinger, Jacqueline
%A Takáč, Peter
%T Variational methods for a resonant problem with the $p$-Laplacian in $\Bbb R^N$
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a163/
%G en
%F EJDE_2004__2004__a163
Alziary, Benedicte; Fleckinger, Jacqueline; Takáč, Peter. Variational methods for a resonant problem with the $p$-Laplacian in $\Bbb R^N$. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a163/