Blow-up of solutions to a nonlinear wave equation
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the solutions to the the radial 2-dimensional wave equation $$\displaylines{ \chi_{tt}-{1\over r}\chi_r-\chi_{rr}+{{\sinh2\chi}\over {2r^2}}=g, \cr \chi(1, r)=\chi_{\circ}\in {\dot H}^{\gamma}_{\rm rad},\quad \chi_t(1, r)=\chi_1 \in {\dot H}^{\gamma-1}_{\rm rad}, }$$ where $r=|x|$ and $x$ in $\mathbb{R}^2$. We show that this Cauchy problem, with values into a hyperbolic space, is ill posed in subcritical Sobolev spaces. In particular, we construct a function $g(t, r)$ in the space $L^p([0,1]L_{\rm rad}^q)$, with ${1\over p}+{2\over q}=3-\gamma, 0 less than\gamma less than 1, p\geq 1$, and $1 less than q\leq 2$, for which the solution satisfies $\lim_{t\to 0}\|{\bar \chi}\|_{{\dot H}^{\gamma}_{\rm rad}}=\infty$. In doing so, we provide a counterexample to estimates in [1].
Classification : 35L10, 35L50
Keywords: wave equation, blow-up, hyperbolic space
@article{EJDE_2004__2004__a125,
     author = {Georgiev, Svetlin Georgiev},
     title = {Blow-up of solutions to a nonlinear wave equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a125/}
}
TY  - JOUR
AU  - Georgiev, Svetlin Georgiev
TI  - Blow-up of solutions to a nonlinear wave equation
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a125/
LA  - en
ID  - EJDE_2004__2004__a125
ER  - 
%0 Journal Article
%A Georgiev, Svetlin Georgiev
%T Blow-up of solutions to a nonlinear wave equation
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a125/
%G en
%F EJDE_2004__2004__a125
Georgiev, Svetlin Georgiev. Blow-up of solutions to a nonlinear wave equation. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a125/