Positive solutions of boundary value problems for $2m$-order differential equations
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the existence of positive solutions to the differential equation $$ (-1)^m x^{(2m)}(t)=f(t,x(t),x'(t),\dots,x^{(m)}(t)), \quad 0 less than t less than \pi, $$ subject to boundary condition $$ x^{(2i)}(0)=x^{(2i)}(\pi)=0, $$ or to the boundary condition $$ x^{(2i)}(0)=x^{(2i+1)}(\pi)=0, $$ for $i=0,1,\dots,m-1$. Sufficient conditions for the existence of at least one positive solution of each boundary-value problem are established. Motivated by references [7,17,21], the emphasis in this paper is that $f$ depends on all higher-order derivatives.
Classification : 34B18, 34B15, 34B27
Keywords: higher-order differential equation, boundary-value problem, positive solution
@article{EJDE_2003__2003__a69,
     author = {Liu, Yuji and Ge, Weigao},
     title = {Positive solutions of boundary value problems for $2m$-order differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a69/}
}
TY  - JOUR
AU  - Liu, Yuji
AU  - Ge, Weigao
TI  - Positive solutions of boundary value problems for $2m$-order differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a69/
LA  - en
ID  - EJDE_2003__2003__a69
ER  - 
%0 Journal Article
%A Liu, Yuji
%A Ge, Weigao
%T Positive solutions of boundary value problems for $2m$-order differential equations
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a69/
%G en
%F EJDE_2003__2003__a69
Liu, Yuji; Ge, Weigao. Positive solutions of boundary value problems for $2m$-order differential equations. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a69/