Periodic solutions for neutral nonlinear differential equations with functional delay
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We use Krasnoselskii's fixed point theorem to show that the nonlinear neutral differential equation with functional delay $$ x'(t) = -a(t)x(t)+ c(t)x'(t-g(t))+ q\big(t, x(t), x(t-g(t)\big) $$ has a periodic solution. Also, by transforming the problem to an integral equation we are able, using the contraction mapping principle, to show that the periodic solution is unique.
Classification : 34K20, 45J05, 45D05
Keywords: Krasnoselskii, neutral, nonlinear, integral equation, periodic solution, unique solution
@article{EJDE_2003__2003__a103,
     author = {Raffoul, Youssef N.},
     title = {Periodic solutions for neutral nonlinear differential equations with functional delay},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a103/}
}
TY  - JOUR
AU  - Raffoul, Youssef N.
TI  - Periodic solutions for neutral nonlinear differential equations with functional delay
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a103/
LA  - en
ID  - EJDE_2003__2003__a103
ER  - 
%0 Journal Article
%A Raffoul, Youssef N.
%T Periodic solutions for neutral nonlinear differential equations with functional delay
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a103/
%G en
%F EJDE_2003__2003__a103
Raffoul, Youssef N. Periodic solutions for neutral nonlinear differential equations with functional delay. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a103/