Two functionals for which $C_0^1$ minimizers are also $W_0^{1,p}$ minimizers
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Brezis and Niremberg [1] showed that for a certain functional the $C_0^1$ minimizer is also the $H_0^1$ minimizer. In this paper, we present two functionals for which a local minimizer in the $C_0^1$ topology is also a local minimizer in the $W_0^{1,p}$ topology. As an application, we show some existence results involving the sub and super solution method for elliptic equations.
Classification : 35J60
Keywords: $W_0^{1$, p$ minimizers$, $C_0^1$ minimizers, divergence elliptic equation, p-Laplacian
@article{EJDE_2002__2002__a94,
     author = {Li, Yanming and Xuan, Benjin},
     title = {Two functionals for which $C_0^1$ minimizers are also $W_0^{1,p}$ minimizers},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a94/}
}
TY  - JOUR
AU  - Li, Yanming
AU  - Xuan, Benjin
TI  - Two functionals for which $C_0^1$ minimizers are also $W_0^{1,p}$ minimizers
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a94/
LA  - en
ID  - EJDE_2002__2002__a94
ER  - 
%0 Journal Article
%A Li, Yanming
%A Xuan, Benjin
%T Two functionals for which $C_0^1$ minimizers are also $W_0^{1,p}$ minimizers
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a94/
%G en
%F EJDE_2002__2002__a94
Li, Yanming; Xuan, Benjin. Two functionals for which $C_0^1$ minimizers are also $W_0^{1,p}$ minimizers. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a94/