On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study the eigenvalue problem $$ -\Delta_{p}u-a(x)|u|^{p-2}u=\lambda |u|^{p-2}u, \quad u\in W^{1,p}_{0}(\Omega), $$ where $1 less than p\le N, $Omega$ is a bounded domain containing 0 in $mathbbR^N, Delta_p$ is the p-Laplacean, and $a(x)$ is a function related to Hardy-Sobolev inequality. The weight function $V(x)inL^s(Omega)$ may change sign and has nontrivial positive part. We study the simplicity, isolatedness of the first eigenvalue, nodal domain properties. Furthermore we show the existence of a nontrivial curve in the Fucik spectrum.$
Classification : 35J20, 35J70, 35P05, 35P30
Keywords: p-laplcean, Hardy-Sobolev operator, Fucik spectrum, indefinite weight
@article{EJDE_2002__2002__a271,
     author = {Sreenadh, K.},
     title = {On the eigenvalue problem for the {Hardy-Sobolev} operator with indefinite weights},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a271/}
}
TY  - JOUR
AU  - Sreenadh, K.
TI  - On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a271/
LA  - en
ID  - EJDE_2002__2002__a271
ER  - 
%0 Journal Article
%A Sreenadh, K.
%T On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a271/
%G en
%F EJDE_2002__2002__a271
Sreenadh, K. On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a271/