On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the Cauchy problem for the nonlinear (possibly strongly) degenerate parabolic transport-diffusion equation $$ \partial_t u + \partial_x \bigl(\gamma(x)f(u)\bigr)=\partial_x^2 A(u), \quad A'(\cdot)\ge 0, $$ where the coefficient $\gamma(x)$ is possibly discontinuous and $f(u)$ is genuinely nonlinear, but not necessarily convex or concave. Existence of a weak solution is proved by passing to the limit as $\varepsilon\downarrow 0$ in a suitable sequence $\{u_{\varepsilon}\}_{\varepsilon}$ of smooth approximations solving the problem above with the transport flux $\gamma(x)f(\cdot)$ replaced by $\gamma_{\varepsilon}(x)f(\cdot)$ and the diffusion function $A(\cdot)$ replaced by $A_{\varepsilon}(\cdot)$, where $\gamma_{\varepsilon}(\cdot)$ is smooth and $A_{\varepsilon}'(\cdot)>0$. The main technical challenge is to deal with the fact that the total variation $|u_{\varepsilon}|_{BV}$ cannot be bounded uniformly in $\varepsilon$, and hence one cannot derive directly strong convergence of $\{u_{\varepsilon}\}_{\varepsilon>0}$. In the purely hyperbolic case ($A'\equiv 0$), where existence has already been established by a number of authors, all existence results to date have used a singular mapping to overcome the lack of a variation bound. Here we derive instead strong convergence via a series of a priori (energy) estimates that allow us to deduce convergence of the diffusion function and use the compensated compactness method to deal with the transport term.
Classification : 35K65, 35D05, 35R05, 35L80
Keywords: degenerate parabolic equation, nonconvex flux, weak solution, discontinuous coefficient, viscosity method, a priori estimates
@article{EJDE_2002__2002__a214,
     author = {Karlsen, Kenneth H. and Risebro, Nils H. and Towers, John D.},
     title = {On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a214/}
}
TY  - JOUR
AU  - Karlsen, Kenneth H.
AU  - Risebro, Nils H.
AU  - Towers, John D.
TI  - On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a214/
LA  - en
ID  - EJDE_2002__2002__a214
ER  - 
%0 Journal Article
%A Karlsen, Kenneth H.
%A Risebro, Nils H.
%A Towers, John D.
%T On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a214/
%G en
%F EJDE_2002__2002__a214
Karlsen, Kenneth H.; Risebro, Nils H.; Towers, John D. On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a214/