Uniqueness theorem for $p$-biharmonic equations
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The goal of this paper is to prove existence and uniqueness of a solution of the initial value problem for the equation $$ (|u''|^{p-2}u'')''=\lambda |u|^{q-2}u $$ where $\lambda\in{\mathbb{R}}$ and $p,q>1$. We prove the existence for $p\geq q$ only, and give a counterexample which shows that for $p$ there need not exist a global solution (blow-up of the solution can occur). On the other hand, we prove the uniqueness for $p\leq q$, and show that for $p>q$ the uniqueness does not hold true (we give a corresponding counterexample again). Moreover, we deal with continuous dependence of the solution on the initial conditions and parameters.
Classification : 34A12, 34C11, 34L30
Keywords: p-biharmonic operator, existence and uniqueness of solution, continuous dependence on initial conditions, jumping nonlinearity
@article{EJDE_2002__2002__a189,
     author = {Benedikt, Ji\v{r}{\'\i}},
     title = {Uniqueness theorem for $p$-biharmonic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a189/}
}
TY  - JOUR
AU  - Benedikt, Jiří
TI  - Uniqueness theorem for $p$-biharmonic equations
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a189/
LA  - en
ID  - EJDE_2002__2002__a189
ER  - 
%0 Journal Article
%A Benedikt, Jiří
%T Uniqueness theorem for $p$-biharmonic equations
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a189/
%G en
%F EJDE_2002__2002__a189
Benedikt, Jiří. Uniqueness theorem for $p$-biharmonic equations. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a189/