Differential equations with several deviating arguments: Sturmian comparison method in oscillation theory. II
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the oscillation of solutions to the differential equation $$ \dot{x}(t) +a_1(t)x[r(t)]+a_2(t)x[p(t)]=0, \quad t\geq t_0 $$ which has a retarded argument $r(t)$ and an advanced argument $p(t)$. We obtain oscillation and non-oscillation conditions which are closed to be necessary. We provide examples to show that our results are best possible and compare them with known results.
Classification : 34K11
Keywords: mixed differential equations, oscillation, non-oscillation, Sturmian comparison method
@article{EJDE_2002__2002__a179,
     author = {Berezansky, Leonid and Domshlak, Yury},
     title = {Differential equations with several deviating arguments: {Sturmian} comparison method in oscillation theory. {II}},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a179/}
}
TY  - JOUR
AU  - Berezansky, Leonid
AU  - Domshlak, Yury
TI  - Differential equations with several deviating arguments: Sturmian comparison method in oscillation theory. II
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a179/
LA  - en
ID  - EJDE_2002__2002__a179
ER  - 
%0 Journal Article
%A Berezansky, Leonid
%A Domshlak, Yury
%T Differential equations with several deviating arguments: Sturmian comparison method in oscillation theory. II
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a179/
%G en
%F EJDE_2002__2002__a179
Berezansky, Leonid; Domshlak, Yury. Differential equations with several deviating arguments: Sturmian comparison method in oscillation theory. II. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a179/