Sufficient conditions for functions to form Riesz bases in $L_2$ and applications to nonlinear boundary-value problems
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1)$. Then we improve a theorem presented in [13] by showing that a "standard" system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1)$. The proofs in this article use Bari's theorem.
Classification : 41A58, 42C15, 34L10, 34L30
Keywords: Riesz basis, infinite sequence of solutions, nonlinear boundary-value problem
@article{EJDE_2001__2001__a193,
     author = {Zhidkov, Peter E.},
     title = {Sufficient conditions for functions to form {Riesz} bases in $L_2$ and applications to nonlinear boundary-value problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a193/}
}
TY  - JOUR
AU  - Zhidkov, Peter E.
TI  - Sufficient conditions for functions to form Riesz bases in $L_2$ and applications to nonlinear boundary-value problems
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a193/
LA  - en
ID  - EJDE_2001__2001__a193
ER  - 
%0 Journal Article
%A Zhidkov, Peter E.
%T Sufficient conditions for functions to form Riesz bases in $L_2$ and applications to nonlinear boundary-value problems
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a193/
%G en
%F EJDE_2001__2001__a193
Zhidkov, Peter E. Sufficient conditions for functions to form Riesz bases in $L_2$ and applications to nonlinear boundary-value problems. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a193/