Boundary-value problems for the one-dimensional $p$-Laplacian with even superlinearity
Electronic Journal of Differential Equations, Tome 1999 (1999).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper is concerned with a study of the quasilinear problem $-(|u'|^{p-2}u')'= |u|^p-\lambda$, in (0,1) $u(0) =u(1) =0$, where $p greater than 1$ and $\lambda \in {\Bbb R}$ are parameters. For $\lambda$, we determine a lower bound for the number of solutions and establish their nodal properties. For $\lambda \leq 0$, we determine the exact number of solutions. In both cases we use a quadrature method.
Classification : 34B15, 34C10
Keywords: one-dimensional p-Laplacian, two-point boundary-value problem, superlinear, time mapping
@article{EJDE_1999__1999__a143,
     author = {Addou, Idris and Benmeza{\"\i}, Abdelhamid},
     title = {Boundary-value problems for the one-dimensional $p${-Laplacian} with even superlinearity},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1999},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a143/}
}
TY  - JOUR
AU  - Addou, Idris
AU  - Benmezaï, Abdelhamid
TI  - Boundary-value problems for the one-dimensional $p$-Laplacian with even superlinearity
JO  - Electronic Journal of Differential Equations
PY  - 1999
VL  - 1999
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a143/
LA  - en
ID  - EJDE_1999__1999__a143
ER  - 
%0 Journal Article
%A Addou, Idris
%A Benmezaï, Abdelhamid
%T Boundary-value problems for the one-dimensional $p$-Laplacian with even superlinearity
%J Electronic Journal of Differential Equations
%D 1999
%V 1999
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a143/
%G en
%F EJDE_1999__1999__a143
Addou, Idris; Benmezaï, Abdelhamid. Boundary-value problems for the one-dimensional $p$-Laplacian with even superlinearity. Electronic Journal of Differential Equations, Tome 1999 (1999). http://geodesic.mathdoc.fr/item/EJDE_1999__1999__a143/