Existence of periodic solutions for a semilinear ordinary differential equation
Electronic Journal of Differential Equations, Tome 1998 (1998).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Dancer [3] found a necessary and sufficient condition for the existence of periodic solutions to the equation $$ \ddot x +g_1(\dot x) + g_0(x) = f(t)\,.$$ His condition is based on a functional that depends on the solution to the above equation with $g_0=0$. However, that solution is not always explicitly known which makes the condition unverifiable in practical situations. As an alternative, we find computable bounds for the functional that provide a sufficient condition and a necessary condition for the existence of solutions.
Classification : 34B15, 34C15, 34C25, 34C99
Keywords: ordinary differential equation, periodic solutions
@article{EJDE_1998__1998__a28,
     author = {Girg, Petr},
     title = {Existence of periodic solutions for a semilinear ordinary differential equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {1998},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a28/}
}
TY  - JOUR
AU  - Girg, Petr
TI  - Existence of periodic solutions for a semilinear ordinary differential equation
JO  - Electronic Journal of Differential Equations
PY  - 1998
VL  - 1998
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a28/
LA  - en
ID  - EJDE_1998__1998__a28
ER  - 
%0 Journal Article
%A Girg, Petr
%T Existence of periodic solutions for a semilinear ordinary differential equation
%J Electronic Journal of Differential Equations
%D 1998
%V 1998
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a28/
%G en
%F EJDE_1998__1998__a28
Girg, Petr. Existence of periodic solutions for a semilinear ordinary differential equation. Electronic Journal of Differential Equations, Tome 1998 (1998). http://geodesic.mathdoc.fr/item/EJDE_1998__1998__a28/