Focusing of hydroacoustic images based on multiangle sounding data
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 193-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove a convergent part of inhomogeneous Groshev type theorem for non–degenerate curves in Euclidean space where an error function is not necessarily monotonic. Our result naturally incorporates and generalizes the homogeneous measure theorem for non-degenerate curves. In particular, the method of Inhomogeneous Transference Principle and Sprindzuk's method of essential and inessential domains are used in the proof.
@article{DVMG_2024_24_2_a4,
     author = {{\CYRE}. {\CYRO}. Kovalenko and A. A. Sushchenko},
     title = {Focusing of hydroacoustic images based on multiangle sounding data},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a4/}
}
TY  - JOUR
AU  - Е. О. Kovalenko
AU  - A. A. Sushchenko
TI  - Focusing of hydroacoustic images based on multiangle sounding data
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 193
EP  - 199
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a4/
LA  - en
ID  - DVMG_2024_24_2_a4
ER  - 
%0 Journal Article
%A Е. О. Kovalenko
%A A. A. Sushchenko
%T Focusing of hydroacoustic images based on multiangle sounding data
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 193-199
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a4/
%G en
%F DVMG_2024_24_2_a4
Е. О. Kovalenko; A. A. Sushchenko. Focusing of hydroacoustic images based on multiangle sounding data. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 193-199. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a4/

[6] Turner J. A., Weaver R. L., “Radiative transfer of ultrasound”, The Journal of the Acoustical Society of America, 96:6 (1994), 3654–3674 | DOI

[7] Quijano J. E., Zurk L. M., “Radiative transfer theory applied to ocean bottom modeling”, The Journal of the Acoustical Society of America, 126:4 (2009), 1711–1723 | DOI

[8] Prokhorov I. V., Zolotarev V. V., Agafonov I. B., “The problem of acoustic sounding in a fluctuating ocean”, Dal'nevost. Mat. Zh., 11:1 (2011), 76–87 | MR | Zbl

[9] Prokhorov I. V., Sushchenko A. A., “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory”, Acoustic journal, 61:3 (2015), 400–408

[10] Prokhorov I. V., Sushchenko A. A., KanV. A., “On the problem of reconstructing the floor topography of a fluctuating ocean”, Journal of Applied and Industrial Mathematics, 9:3 (2015), 412–422 | DOI | MR | Zbl

[11] Kovalenko E. O., Sushchenko A. A., Prokhorov I. V., “Processing of the information from side-scan sonar”, Proceedings of SPIE, 10035 (2016), 100352C | DOI

[12] Kovalenko E. O., Sushchenko A. A., Kan V. A., “Focusing of sonar images as an inverse problem for radiative transfer equation”, Proceedings of SPIE, 10833 (2018), 108336D

[13] Prokhorov I. V., Sushchenko A. A., Kim A., “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions”, Journal of Applied and Industrial Mathematics, 11:1 (2017), 115–124 | DOI | MR | Zbl

[14] Prokhorov I. V., Sushchenko A. A., “The Cauchy problem for the radiatve transfer equation in an unbounded medium”, Dal'nevost. Mat. Zh., 18:1 (2018), 101–111 | MR | Zbl

[15] Prokhorov I. V., Kovalenko E. O., “Determination of the bottom scattering coefficient in multi-beam probing of the ocean”, Far Eastern Mathematical Journal, 19:2 (2019), 206–222 | MR | Zbl

[16] Amosov A. A., “Initial-Boundary Value Problem for the Non-Stationary Radiative Transfer Equation with Fresnel Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 231:3 (2018), 279–337 | DOI | MR | Zbl

[17] Amosov A. A., “Initial-Boundary Value Problem for the Non-stationary Radiative Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 235:2 (2018), 117–137 | DOI | MR | Zbl

[18] Amosov A. A., “Nonstationary radiation transfer through a multilayered medium with reflection and refraction conditions”, Mathematical Methods in the Applied Sciences, 41:17 (2018), 8115–8135 | DOI | MR | Zbl

[19] Prokhorov I. V., “The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions”, Math. Notes, 105:1 (2019), 80–90 | DOI | MR | Zbl

[20] Kim A., Prokhorov I. V., “Initial-boundary value problem for a radiative transfer equation with generalized matching conditions”, Siberian Electronic Mathematical Reports, 16 (2019), 1036–1056 | MR | Zbl