Beltrami-Mitchell equations in a non-Euclidean continuum model
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 178-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work contains a generalization in covariant form of the classical Beltrami-Mitchell equations for the case of incompatible deformations. It is shown that in the corresponding relations an additional force appears, characterizing the internal non-Euclidean geometry of the material, the description of which is given in terms of the Ricci tensor.
@article{DVMG_2024_24_2_a2,
     author = {M. A. Guzev and O. N. Lyubimova and K. N. Pestov},
     title = {Beltrami-Mitchell equations in a {non-Euclidean} continuum model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {178--186},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - O. N. Lyubimova
AU  - K. N. Pestov
TI  - Beltrami-Mitchell equations in a non-Euclidean continuum model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 178
EP  - 186
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/
LA  - ru
ID  - DVMG_2024_24_2_a2
ER  - 
%0 Journal Article
%A M. A. Guzev
%A O. N. Lyubimova
%A K. N. Pestov
%T Beltrami-Mitchell equations in a non-Euclidean continuum model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 178-186
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/
%G ru
%F DVMG_2024_24_2_a2
M. A. Guzev; O. N. Lyubimova; K. N. Pestov. Beltrami-Mitchell equations in a non-Euclidean continuum model. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 178-186. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/

[1] Godunov S. K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978, 304 pp. | MR

[2] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005, 584 pp.

[3] Chernyshev G. N., Popov A. P., Kozintsev V. M., Ponomarev I. I., Ostatochnye napryazheniya v deformiruemykh tverdykh telakh, Nauka, M., 1996, 240 pp.

[4] Kondo K., “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Nat. Congr. Appl. Mech. Tokyo, 231 (1953), 41–47 | MR

[5] Bilby B. A., Bullough R., Smith E., “Continuos distributions of dislocations: a new application of the methods of non - Reimannian geometry”, Proc. Roy. Soc. A., 231 (1955), 263–273 | MR

[6] Sedov L. I., “Matematicheskie metody postroeniya novykh modelei sploshnykh sred”, UMN, 20:5(125) (1965), 121–180 | MR | Zbl

[7] Kadich A., Edelen D., Kalibrovochnaya teoriya dislokatsii i disklinatsii, Mir, M., 1987, 168 pp. | MR

[8] Panin V. E., Grinyaev Yu. V., Danilov V. I., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990, 225 pp.

[9] Grachev A. V., Nesterov A. I., Ovchinikov S. G., “The Gauge Theory of Point Defects”, Phys.Stat. Sol.(b), 156 (1989), 403–410 | DOI

[10] Myasnikov V. P., Guzev M. A., “Affinno-metricheskaya struktura uprugoplasticheskoi modeli sploshnoi sredy”, Sovremennye metody mekhaniki sploshnykh sred, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Leonida Ivanovicha Sedova, Trudy MIAN, 223, Nauka, MAIK «Nauka/Interperiodika», M., 1998, 30–37

[11] Guzev M. A., Myasnikov V. P., “Neevklidova struktura polya vnutrennikh napryazhenii sploshnoi sredy”, Dalnevost. matem. zhurn., 2:2 (2001), 29–44

[12] Guzev M. A., Qi Ch., “Vyvod uravnenii gradientnoi teorii v krivolineinykh koordinatakh”, Dalnevost. matem. zhurn., 13:1 (2013), 35–42 | MR | Zbl

[13] Lyakhovskii V. D., Bolokhov A. A., Gruppy simmetrii i elementarnye chastitsy, Izd-vo Leningr. un-ta, L., 1983, 336 pp. | MR

[14] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, DAN, 347 (1996), 199–201 | Zbl

[15] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 584 pp. | MR