Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2024_24_2_a2, author = {M. A. Guzev and O. N. Lyubimova and K. N. Pestov}, title = {Beltrami-Mitchell equations in a {non-Euclidean} continuum model}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {178--186}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/} }
TY - JOUR AU - M. A. Guzev AU - O. N. Lyubimova AU - K. N. Pestov TI - Beltrami-Mitchell equations in a non-Euclidean continuum model JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2024 SP - 178 EP - 186 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/ LA - ru ID - DVMG_2024_24_2_a2 ER -
M. A. Guzev; O. N. Lyubimova; K. N. Pestov. Beltrami-Mitchell equations in a non-Euclidean continuum model. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 178-186. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a2/
[1] Godunov S. K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978, 304 pp. | MR
[2] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005, 584 pp.
[3] Chernyshev G. N., Popov A. P., Kozintsev V. M., Ponomarev I. I., Ostatochnye napryazheniya v deformiruemykh tverdykh telakh, Nauka, M., 1996, 240 pp.
[4] Kondo K., “On the geometrical and physical foundations of the theory of yielding”, Proc. 2nd Japan Nat. Congr. Appl. Mech. Tokyo, 231 (1953), 41–47 | MR
[5] Bilby B. A., Bullough R., Smith E., “Continuos distributions of dislocations: a new application of the methods of non - Reimannian geometry”, Proc. Roy. Soc. A., 231 (1955), 263–273 | MR
[6] Sedov L. I., “Matematicheskie metody postroeniya novykh modelei sploshnykh sred”, UMN, 20:5(125) (1965), 121–180 | MR | Zbl
[7] Kadich A., Edelen D., Kalibrovochnaya teoriya dislokatsii i disklinatsii, Mir, M., 1987, 168 pp. | MR
[8] Panin V. E., Grinyaev Yu. V., Danilov V. I., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990, 225 pp.
[9] Grachev A. V., Nesterov A. I., Ovchinikov S. G., “The Gauge Theory of Point Defects”, Phys.Stat. Sol.(b), 156 (1989), 403–410 | DOI
[10] Myasnikov V. P., Guzev M. A., “Affinno-metricheskaya struktura uprugoplasticheskoi modeli sploshnoi sredy”, Sovremennye metody mekhaniki sploshnykh sred, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Leonida Ivanovicha Sedova, Trudy MIAN, 223, Nauka, MAIK «Nauka/Interperiodika», M., 1998, 30–37
[11] Guzev M. A., Myasnikov V. P., “Neevklidova struktura polya vnutrennikh napryazhenii sploshnoi sredy”, Dalnevost. matem. zhurn., 2:2 (2001), 29–44
[12] Guzev M. A., Qi Ch., “Vyvod uravnenii gradientnoi teorii v krivolineinykh koordinatakh”, Dalnevost. matem. zhurn., 13:1 (2013), 35–42 | MR | Zbl
[13] Lyakhovskii V. D., Bolokhov A. A., Gruppy simmetrii i elementarnye chastitsy, Izd-vo Leningr. un-ta, L., 1983, 336 pp. | MR
[14] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, DAN, 347 (1996), 199–201 | Zbl
[15] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 584 pp. | MR