Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2024_24_2_a12, author = {K. A. Chekhonin}, title = {Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {286--299}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/} }
TY - JOUR AU - K. A. Chekhonin TI - Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2024 SP - 286 EP - 299 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/ LA - ru ID - DVMG_2024_24_2_a12 ER -
%0 Journal Article %A K. A. Chekhonin %T Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder %J Dalʹnevostočnyj matematičeskij žurnal %D 2024 %P 286-299 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/ %G ru %F DVMG_2024_24_2_a12
K. A. Chekhonin. Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 286-299. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/
[1] Rudskoi V. K. [i dr.], Additivnye tekhnologii. Materialy i tekhnologicheskie protsessy, Politekh – Press, SPb, 2021, 515 pp.
[2] Mukherjee T., DebRoy T., Theory and Practice of Additive Manufacturing, 1st Edition, Wiley, 2023, 522 pp.
[3] Liu T. S., Chen P., Qiu F., Yang H., Tan N. Y. J., Chew Y., Wang D., Li R., Jiang Q.-C., Tan Ch., “Review on laser directed energy deposited aluminum alloys”, International Journal of Extreme Manufacturing, 6:2 (2024), 022004 | DOI
[4] Bayat M., Dong W., Thorborg J., To A. C., Hattel J. H., “A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modelling strategies”, Additive Manufacturing, 47 (2021), 102278 | DOI
[5] Yu T., Zhao J., “Quantitative simulation of selective laser melting of metals enabled by new high-fidelity multiphase, multiphysics computational tool”, Comput. Methods Appl. Mech. Eng., 399 (2022), 115422 | DOI | MR | Zbl
[6] Russell M. A., Souto-Iglesias A., Zohdi T. I., “Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method”, Comput. Methods Appl. Mech. Eng., 341 (2018), 163–187 | DOI | MR | Zbl
[7] Kovalev O., Bedenko D., Zaitsev A., “Development and application of laser cladding modelling technique: From coaxial powder feeding to surface deposition and bead formation”, Appl. Math., 57 (2018), 339–359 | MR | Zbl
[8] Yu J., Lin Y., Wang J, Chen J. , Huang W., “Mechanics and energy analysis on molten pool spreading during laser solid forming”, Applied Surface Science, 256:14 (2010), 4612–4620 | DOI
[9] Shikhmurzaev Y. D., “Solidification and dynamic wetting: a unified modeling framework”, Physics of Fluids, 33 (2021), 072101 | DOI
[10] Herbaut et al R., “A criterion for the pinning and depinning of an advancing contact line on a cold substrate”, Euro. Phys. J. Spec. Top., 229 (2020), 043602 | DOI
[11] Gielen et al M. V., “Solidification of liquid metal drops during impact”, J. Fluid Mech., 883 (2020), A32, 20 pp. | DOI
[12] Chekhonin K. A., Vlasenko V. D., “Three-dimensional finite element model of three-phase contact line dynamics and dynamic contact angle”, WSEAS transactions on fluid mechanics, 19 (2024), 577–582 | DOI
[13] Chekhonin K. A., Vlasenko V. D., “Three-dimensional finite element model of the motion of a viscous incompressible fluid with a free surface, taking into account the surface tension”, AIP conference proceedings. Actual problems of continuum mechanics: experiment, theory, and applications, 207 (2023), 030007 | DOI
[14] Belozerov N. I., Chekhonin K. A., “Trekhmernoe konechno-elementnoe modelirovanie techeniya rasplava metalla so svobodnoi poverkhnostyu v usloviyakh dvizhuschegosya lazernogo istochnika”, Dalnevost. matem. zhurn., 1 (2024), 9–21 | Zbl
[15] Bulgakov V. K., Chekhonin K. A., Lipanov A. M., “Zapolnenie oblasti mezhdu vertikalnymi koaksialnymi tsilindrami anomalno vyazkoi zhidkostyu v neizometricheskikh usloviyakh”, Inzhenerno-fizicheskii zhurnal, 57:4 (1989), 577–582
[16] Chekhonin K. A., Vlasenko V. D., “Modelling of capillary coaxial gap filling with viscous liquid”, Computational Continuum Mechanics, 12 (2019), 313–324 | DOI
[17] Belozerov N. I., Chekhonin K. A., “Rol poverkhnostnogo natyazheniya i smachivaniya pri vyraschivanii metalloizdelii v pryamykh lazernykh tekhnologiyakh 3D-pechati”, Dalnevost. matem. zhurn., 2 (2024), 157–169
[18] DebRoy T., Wei H. L., Zuback J. S., Mukherjee T., Elmer J. W., Milewski J. O., Beese A. M., Wilson-Heid A., De A., Zhang W., “Additive manufacturing of metallic components – Process, structure and properties”, Prog. Mater. Sci., 92 (2018), 112–224 | DOI
[19] Bax B., Rajput R., Kellet R., “Systematic evaluation of process parameter maps for laser cladding and directed energy deposition”, Additive Manufacturing, 21 (2018), 487–494 | DOI
[20] Malikov A. G., Golyshev A. A., Vitoshkin I. E., “Sovremennye tendentsii lazernoi svarki i additivnykh tekhnologii (obzor)”, Prikl. mekh. tekhn. fiz., 64:1 (2023), 36–59 | DOI
[21] Voinov O. V., “Gidrodinamika smachivaniya”, Izv. AN SSSR. MZhG, 5 (1976), 76–84
[22] Bulgakov V. K., Chekhonin K. A., Osnovy teorii metoda smeshannykh konechnykh elementov, Izd-vo Khabar. politekh. instituta, Khabarovsk, 1999 | MR