Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 286-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a new method for studying the dynamics of non-isothermal processes in laser direct additive manufacturing (L-DED) technologies of metal products by growing a sessile drop. Its growth is performed with stationary laser radiation acting on the substrate and metal powder, which is supplied by a jet of inert gas to the focusing area of the laser beam. Heat and mass transfer of a metal melt with Newtonian rheology is considered laminar with a temperature-independent density. The heated powder is instantly melted on the surface of the bath and added as a continuous mass flow through the free surface of the growing droplet with a given distribution. Dynamic conditions on its free surface depend on the value of surface tension, Marangoni shear stress and normal pressure from the action of a jet of gas with powder. Modeling of wetting of solid surfaces by the melt is performed within the framework of the modified Voinov model. The numerical solution of the problem is performed in three-dimensional and axisymmetric formulations by the mixed finite element method using the ALE free surface tracking algorithm. The features of heat and mass transfer in a growing droplet and the evolution of its free surface are investigated. A significant effect of the gas flow and the mass flow rate of the powder on the structure of melt convection in the droplet and the evolution of the free surface with the formation of a crater is shown.
@article{DVMG_2024_24_2_a12,
     author = {K. A. Chekhonin},
     title = {Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {286--299},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/}
}
TY  - JOUR
AU  - K. A. Chekhonin
TI  - Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 286
EP  - 299
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/
LA  - ru
ID  - DVMG_2024_24_2_a12
ER  - 
%0 Journal Article
%A K. A. Chekhonin
%T Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 286-299
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/
%G ru
%F DVMG_2024_24_2_a12
K. A. Chekhonin. Numerical simulation of the growth of a sessile drop of metal melt on a horizontal substrate under direct feeding of laser energy and powder. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 2, pp. 286-299. http://geodesic.mathdoc.fr/item/DVMG_2024_24_2_a12/

[1] Rudskoi V. K. [i dr.], Additivnye tekhnologii. Materialy i tekhnologicheskie protsessy, Politekh – Press, SPb, 2021, 515 pp.

[2] Mukherjee T., DebRoy T., Theory and Practice of Additive Manufacturing, 1st Edition, Wiley, 2023, 522 pp.

[3] Liu T. S., Chen P., Qiu F., Yang H., Tan N. Y. J., Chew Y., Wang D., Li R., Jiang Q.-C., Tan Ch., “Review on laser directed energy deposited aluminum alloys”, International Journal of Extreme Manufacturing, 6:2 (2024), 022004 | DOI

[4] Bayat M., Dong W., Thorborg J., To A. C., Hattel J. H., “A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modelling strategies”, Additive Manufacturing, 47 (2021), 102278 | DOI

[5] Yu T., Zhao J., “Quantitative simulation of selective laser melting of metals enabled by new high-fidelity multiphase, multiphysics computational tool”, Comput. Methods Appl. Mech. Eng., 399 (2022), 115422 | DOI | MR | Zbl

[6] Russell M. A., Souto-Iglesias A., Zohdi T. I., “Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method”, Comput. Methods Appl. Mech. Eng., 341 (2018), 163–187 | DOI | MR | Zbl

[7] Kovalev O., Bedenko D., Zaitsev A., “Development and application of laser cladding modelling technique: From coaxial powder feeding to surface deposition and bead formation”, Appl. Math., 57 (2018), 339–359 | MR | Zbl

[8] Yu J., Lin Y., Wang J, Chen J. , Huang W., “Mechanics and energy analysis on molten pool spreading during laser solid forming”, Applied Surface Science, 256:14 (2010), 4612–4620 | DOI

[9] Shikhmurzaev Y. D., “Solidification and dynamic wetting: a unified modeling framework”, Physics of Fluids, 33 (2021), 072101 | DOI

[10] Herbaut et al R., “A criterion for the pinning and depinning of an advancing contact line on a cold substrate”, Euro. Phys. J. Spec. Top., 229 (2020), 043602 | DOI

[11] Gielen et al M. V., “Solidification of liquid metal drops during impact”, J. Fluid Mech., 883 (2020), A32, 20 pp. | DOI

[12] Chekhonin K. A., Vlasenko V. D., “Three-dimensional finite element model of three-phase contact line dynamics and dynamic contact angle”, WSEAS transactions on fluid mechanics, 19 (2024), 577–582 | DOI

[13] Chekhonin K. A., Vlasenko V. D., “Three-dimensional finite element model of the motion of a viscous incompressible fluid with a free surface, taking into account the surface tension”, AIP conference proceedings. Actual problems of continuum mechanics: experiment, theory, and applications, 207 (2023), 030007 | DOI

[14] Belozerov N. I., Chekhonin K. A., “Trekhmernoe konechno-elementnoe modelirovanie techeniya rasplava metalla so svobodnoi poverkhnostyu v usloviyakh dvizhuschegosya lazernogo istochnika”, Dalnevost. matem. zhurn., 1 (2024), 9–21 | Zbl

[15] Bulgakov V. K., Chekhonin K. A., Lipanov A. M., “Zapolnenie oblasti mezhdu vertikalnymi koaksialnymi tsilindrami anomalno vyazkoi zhidkostyu v neizometricheskikh usloviyakh”, Inzhenerno-fizicheskii zhurnal, 57:4 (1989), 577–582

[16] Chekhonin K. A., Vlasenko V. D., “Modelling of capillary coaxial gap filling with viscous liquid”, Computational Continuum Mechanics, 12 (2019), 313–324 | DOI

[17] Belozerov N. I., Chekhonin K. A., “Rol poverkhnostnogo natyazheniya i smachivaniya pri vyraschivanii metalloizdelii v pryamykh lazernykh tekhnologiyakh 3D-pechati”, Dalnevost. matem. zhurn., 2 (2024), 157–169

[18] DebRoy T., Wei H. L., Zuback J. S., Mukherjee T., Elmer J. W., Milewski J. O., Beese A. M., Wilson-Heid A., De A., Zhang W., “Additive manufacturing of metallic components – Process, structure and properties”, Prog. Mater. Sci., 92 (2018), 112–224 | DOI

[19] Bax B., Rajput R., Kellet R., “Systematic evaluation of process parameter maps for laser cladding and directed energy deposition”, Additive Manufacturing, 21 (2018), 487–494 | DOI

[20] Malikov A. G., Golyshev A. A., Vitoshkin I. E., “Sovremennye tendentsii lazernoi svarki i additivnykh tekhnologii (obzor)”, Prikl. mekh. tekhn. fiz., 64:1 (2023), 36–59 | DOI

[21] Voinov O. V., “Gidrodinamika smachivaniya”, Izv. AN SSSR. MZhG, 5 (1976), 76–84

[22] Bulgakov V. K., Chekhonin K. A., Osnovy teorii metoda smeshannykh konechnykh elementov, Izd-vo Khabar. politekh. instituta, Khabarovsk, 1999 | MR