Reachability of inequalities from Lame's theorem
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 45-54
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the following result is proved. The number of steps in Euclid's algorithm for two natural arguments, the smaller of which has $v$ digital digits in the decimal system, does not exceed the integer part of the fraction \linebreak $(v+ \lg ({\sqrt{5}}/ {\Phi}))/ \lg \Phi$, where $\Phi=(1+\sqrt{5})/2$, and this estimate is achieved for every natural $v$. It is also proved that partial or asymptotic reachability is valid for the other two known upper bounds on the length of the Euclid algorithm.
@article{DVMG_2024_24_1_a4,
author = {I. D. Kan},
title = {Reachability of inequalities from {Lame's} theorem},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {45--54},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a4/}
}
I. D. Kan. Reachability of inequalities from Lame's theorem. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a4/