Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2024_24_1_a2, author = {A. A. Gritsenko and K. A. Chekhonin}, title = {Numerical modeling of residual stresses in deposited metal layer with a moving laser energy source}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {22--32}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a2/} }
TY - JOUR AU - A. A. Gritsenko AU - K. A. Chekhonin TI - Numerical modeling of residual stresses in deposited metal layer with a moving laser energy source JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2024 SP - 22 EP - 32 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a2/ LA - ru ID - DVMG_2024_24_1_a2 ER -
%0 Journal Article %A A. A. Gritsenko %A K. A. Chekhonin %T Numerical modeling of residual stresses in deposited metal layer with a moving laser energy source %J Dalʹnevostočnyj matematičeskij žurnal %D 2024 %P 22-32 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a2/ %G ru %F DVMG_2024_24_1_a2
A. A. Gritsenko; K. A. Chekhonin. Numerical modeling of residual stresses in deposited metal layer with a moving laser energy source. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 22-32. http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a2/
[1] Arutyunyan N. Kh., Manzhirov A. V., Naumov V. E., Kontaktnye zadachi rastuschikh tel, Nauka, M., 1991, 176 pp. | MR
[2] Arutyunyan N. Kh., Drozdov A. D., Naumov V. E., Mekhanika rastuschikh vyazkouprugoplasticheskikh tel, Nauka, M., 1987, 471 pp.
[3] Lindgren L.E., “Finite Element Modeling and Simulation of Welding Part 1: Increased Complexity”, Journal of Thermal Stresses, 24:2 (2001), 141–192 | DOI
[4] Gusarov A. V., Pavlov M., Smurov I., “Residual Stresses at Laser Surface Remelting and Additive Manufacturing”, Physics Procedia, 12 (2011), 248–254 | DOI
[5] Chekhonin K. A., Vlasenko V. D., “Numerical Modeling of Compression Cure High-Filled Polymer Material”, Journal of Siberian Federal University. Mathematics Physics, 14:6 (2021), 805–814 | DOI
[6] Chekhonin K. A., Vlasenko V. D., “Gradientnyi algoritm optimizatsii temperaturno-konversionnoi zadachi pri otverzhdenii vysokonapolnennykh polimernykh materialov”, Informatika i sistemy upravleniya, 4:62 (2019), 58–70
[7] Chekhonin K. A., “Current state and development of the theory of curing high-energy composite polymer materials”, Journal of Siberian Federal University. Mathematics Physics, 17:1 (2024), 106–114 | MR
[8] Chekhonin K. A., Vlasenko V. D., “The Role of Curing Stresses in Subsequent Response and Damage of High Energetic materials”, The conference on High Energy Processes in Condensed Matter (HEPCM)-2021, Journal of Physics: Conference Series, 2021, 55–63
[9] Bulgakov V. K., Chekhonin K. A., “Modeling of a 3D Problem of compression forming system “Composite shell – low compressible consolidating Filler”””, J. Mathematical Modeling, 4 (2002), 121–131
[10] Mirkoohi E., Dobbs J. R., Liang S. Y., “Analytical modeling of residual stress in direct metal deposition considering scan strategy”, The International Journal of Advanced Manufacturing Technology, 106 (2020), 4105–4121 | DOI
[11] Chekhonin K. A., “Mikromekhanicheskaya model vysokoenergeticheskogo materiala pri otverzhdenii”, Dalnevostochnyi matematicheskii zhurnal, 22:1 (2022), 119–124 | MR | Zbl
[12] Chekhonin K. A., “O termodinamicheskoi soglasovannosti svyazannoi modeli otverzhdeniya elastomera pri konechnykh deformatsiyakh”, Dalnevostochnyi matematicheskii zhurnal, 22:1 (2022), 107–118 | MR | Zbl
[13] Bulgakov V. K., Chekhonin K. A., Osnovy teorii metoda smeshannykh konechnykh elementov, Izd-vo Khabar. tekhn. un-t, Khabarovsk, 1999, 357 pp. | MR
[14] Baiges J., Chiumenti M., Moreira C. A., Cervera M., “An Adaptive Finite Element strategy for the numericalsimulation of Additive Manufacturing processes”, Additive Manufacturing, 37 (2021), 101650:1–101650:13 | DOI
[15] Roberts I. A., Wang C. J., Esterlein R., Stanford M., “A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing”, International Journal of Machine Tools Manufacture, 49 (2009), 916–923 | DOI
[16] Caiazzo F., Alfieri V., “Simulation of Laser-assisted Directed Energy Deposition of Aluminum Powder: Prediction of Geometry and Temperature Evolution”, Materials, 12 (2019) | DOI
[17] Li Z., Li B.-Q., Bai P., Liu B., “Research on the Thermal Behaviour of a Selectively Laser Melted Aluminium Alloy: Simulation and Experiment”, Materials, 11 (2018)
[18] Mukherjee T., DebRoy T., Theory and Practice of Additive Manufacturing 1st Edition, Wiley, 2023
[19] Staron P., Vaidya W. V., Koçak M., “Precipitates in laser beam welded aluminum alloy AA6056 butt joints studied by small-angle neutron scattering”, Science and Engineering: A, 525 (2009), 192–199 | DOI