Diluted cubic spin ice model
Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 120-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a model of Ising-like point dipoles located on the edges of a simple cubic lattice. The temperature behaviour of heat capacity, magnetization and magnetic susceptibility in the nearest-neighbour model and the model with a limited long-range interaction radius is obtained by the Metropolis method. Three thermodynamic magnetic phases are present in the system: long-range order, short-range order, and disorder. The long-range order phase is absent in the nearest-neighbour model. The short-range order phase is characterised by a high level of entropy induced by the lattice geometry. An external magnetic field along one of the basis axes leads to the competition of order parameters in the model with a limited long-range interaction radius, and to the disappearance of residual entropy as a heat capacity peak in the nearest-neighbour model. The nonlinear dependence of the critical temperature of heat capacity on the concentration of dilution of the system by nonmagnetic vacancies in the nearest-neighbour model is shown.
@article{DVMG_2024_24_1_a10,
     author = {V. S. Strongin and P. A. Ovchinnikov and E. A. Lobanova and I. V. Trefilov and Yu. A. Shevchenko},
     title = {Diluted cubic spin ice model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {120--132},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/}
}
TY  - JOUR
AU  - V. S. Strongin
AU  - P. A. Ovchinnikov
AU  - E. A. Lobanova
AU  - I. V. Trefilov
AU  - Yu. A. Shevchenko
TI  - Diluted cubic spin ice model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2024
SP  - 120
EP  - 132
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/
LA  - ru
ID  - DVMG_2024_24_1_a10
ER  - 
%0 Journal Article
%A V. S. Strongin
%A P. A. Ovchinnikov
%A E. A. Lobanova
%A I. V. Trefilov
%A Yu. A. Shevchenko
%T Diluted cubic spin ice model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2024
%P 120-132
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/
%G ru
%F DVMG_2024_24_1_a10
V. S. Strongin; P. A. Ovchinnikov; E. A. Lobanova; I. V. Trefilov; Yu. A. Shevchenko. Diluted cubic spin ice model. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 120-132. http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/

[1] Skjærvø S. H., Marrows C. H., Stamps et R. L. al., “Advances in artificial spin ice”, Nature Reviews Physics, 2 (2020), 13–28

[2] Shevchenko Y., Makarov A., Nefedev K., “Effect of long-and short-range interactions on the thermodynamics of dipolar spin ice”, Physics Letters A, 381:5 (2017), 428–434 | DOI

[3] Morrison M. J., Nelson T. R., Nisoli C., “Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration”, New Journal of Physics, 15:4 (2013), 045009 | DOI

[4] Dasgupta S., Wang X., French KM., Villalobos E., “Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction”, Nature communications, 12:1 (2021), 1684 | DOI | MR

[5] Sahoo S., May A., van Den Berg A., Mondal et A. K. al., “Observation of coherent spin waves in a three-dimensional artificial spin ice structure”, Nano Letters, 21:11 (2021), 4629–4635 | DOI

[6] Sahoo S., Mondal S., Williams G., May A., “Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure”, Nanoscale, 10:21 (2018), 9981–9986 | DOI

[7] Keller L., Mamoori M. Al, Pieper J., Gspan C., “Direct-write of free-form building blocks for artificial magnetic 3D lattices”, Scientific reports, 8:1 (2018), 6160 | DOI

[8] Koraltan S., Slanovc F., Bruckner F., Nisoli C., “Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice”, npj Computational Materials, 7:1 (2021), 125 | DOI

[9] Shevchenko Y., Strongin V., Kapitan V., Soldatov K., “Order and disorder, crossovers, and phase transitions in dipolar artificial spin ice on the Cairo lattice”, Physical Review E, 106:6 (2022), 064105 | DOI

[10] Kapitan V. Yu., Vasilev E. V., Shevchenko Yu. A., Perzhu A. V., “Termodinamicheskie svoistva sistem spinov Geizenberga na kvadratnoi reshetke s vzaimodeistviem Dzyaloshinskogo – Moriya”, Dalnevost. matem. zhurn., 20:1 (2020), 63–73 | DOI | MR | Zbl

[11] Wang R. F., Nisoli C., Freitas R. S., Li J., “Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands”, Nature, 439:7074 (2006), 303–306 | DOI

[12] Stoner E. C., Wohlfarth E. P., “A mechanism of magnetic hysteresis in heterogeneous alloys”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:826 (1948), 559–642

[13] Metropolis N., Rosenbluth A. W., Rosenbluth et M. N. al., “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092 | DOI | Zbl

[14] Hastings W. K., “Monte Carlo sampling methods using Markov chains and their application”, Biometrika, 57 (1970), 97–109 | DOI | MR | Zbl

[15] Makarova K., Makarov A., Strongin et V. al., “Canonical Monte Carlo multispin cluster method”, Journal of Computational and Applied Mathematics, 427 (2023), 115153 | DOI | MR

[16] Makarova K. V., Makarov A. G., Padalko M. A., Strongin V. S., “Multispinovyi Monte-Karlo metod”, Dalnevost. matem. zhurn., 20:2 (2020), 212–220 | DOI | MR | Zbl

[17] Le Guillou J. C., Zinn-Justin J., “Critical exponents from field theory”, Physical Review B, 21:9 (1980), 3976 | DOI | MR | Zbl

[18] Vaz C. A. F., Bland J. A. C., Lauhoff G., “Magnetism in ultrathin film structures”, Reports on Progress in Physics, 71:5 (2008), 056501 | DOI

[19] Aharony A., Harris A. B., Wiseman S., “Critical disordered systems with constraints and the inequality $\nu > 2/d$”, Phys. Rev. Lett., 81:2 (1998), 252 | DOI

[20] Marques M. I., Gonzalo J. A., “Self-averaging of random and thermally disordered diluted Ising systems”, Phys. Rev. E, 60:2 (1999), 2394 | DOI | MR