Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2024_24_1_a10, author = {V. S. Strongin and P. A. Ovchinnikov and E. A. Lobanova and I. V. Trefilov and Yu. A. Shevchenko}, title = {Diluted cubic spin ice model}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {120--132}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/} }
TY - JOUR AU - V. S. Strongin AU - P. A. Ovchinnikov AU - E. A. Lobanova AU - I. V. Trefilov AU - Yu. A. Shevchenko TI - Diluted cubic spin ice model JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2024 SP - 120 EP - 132 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/ LA - ru ID - DVMG_2024_24_1_a10 ER -
%0 Journal Article %A V. S. Strongin %A P. A. Ovchinnikov %A E. A. Lobanova %A I. V. Trefilov %A Yu. A. Shevchenko %T Diluted cubic spin ice model %J Dalʹnevostočnyj matematičeskij žurnal %D 2024 %P 120-132 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/ %G ru %F DVMG_2024_24_1_a10
V. S. Strongin; P. A. Ovchinnikov; E. A. Lobanova; I. V. Trefilov; Yu. A. Shevchenko. Diluted cubic spin ice model. Dalʹnevostočnyj matematičeskij žurnal, Tome 24 (2024) no. 1, pp. 120-132. http://geodesic.mathdoc.fr/item/DVMG_2024_24_1_a10/
[1] Skjærvø S. H., Marrows C. H., Stamps et R. L. al., “Advances in artificial spin ice”, Nature Reviews Physics, 2 (2020), 13–28
[2] Shevchenko Y., Makarov A., Nefedev K., “Effect of long-and short-range interactions on the thermodynamics of dipolar spin ice”, Physics Letters A, 381:5 (2017), 428–434 | DOI
[3] Morrison M. J., Nelson T. R., Nisoli C., “Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration”, New Journal of Physics, 15:4 (2013), 045009 | DOI
[4] Dasgupta S., Wang X., French KM., Villalobos E., “Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction”, Nature communications, 12:1 (2021), 1684 | DOI | MR
[5] Sahoo S., May A., van Den Berg A., Mondal et A. K. al., “Observation of coherent spin waves in a three-dimensional artificial spin ice structure”, Nano Letters, 21:11 (2021), 4629–4635 | DOI
[6] Sahoo S., Mondal S., Williams G., May A., “Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure”, Nanoscale, 10:21 (2018), 9981–9986 | DOI
[7] Keller L., Mamoori M. Al, Pieper J., Gspan C., “Direct-write of free-form building blocks for artificial magnetic 3D lattices”, Scientific reports, 8:1 (2018), 6160 | DOI
[8] Koraltan S., Slanovc F., Bruckner F., Nisoli C., “Tension-free Dirac strings and steered magnetic charges in 3D artificial spin ice”, npj Computational Materials, 7:1 (2021), 125 | DOI
[9] Shevchenko Y., Strongin V., Kapitan V., Soldatov K., “Order and disorder, crossovers, and phase transitions in dipolar artificial spin ice on the Cairo lattice”, Physical Review E, 106:6 (2022), 064105 | DOI
[10] Kapitan V. Yu., Vasilev E. V., Shevchenko Yu. A., Perzhu A. V., “Termodinamicheskie svoistva sistem spinov Geizenberga na kvadratnoi reshetke s vzaimodeistviem Dzyaloshinskogo – Moriya”, Dalnevost. matem. zhurn., 20:1 (2020), 63–73 | DOI | MR | Zbl
[11] Wang R. F., Nisoli C., Freitas R. S., Li J., “Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands”, Nature, 439:7074 (2006), 303–306 | DOI
[12] Stoner E. C., Wohlfarth E. P., “A mechanism of magnetic hysteresis in heterogeneous alloys”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:826 (1948), 559–642
[13] Metropolis N., Rosenbluth A. W., Rosenbluth et M. N. al., “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092 | DOI | Zbl
[14] Hastings W. K., “Monte Carlo sampling methods using Markov chains and their application”, Biometrika, 57 (1970), 97–109 | DOI | MR | Zbl
[15] Makarova K., Makarov A., Strongin et V. al., “Canonical Monte Carlo multispin cluster method”, Journal of Computational and Applied Mathematics, 427 (2023), 115153 | DOI | MR
[16] Makarova K. V., Makarov A. G., Padalko M. A., Strongin V. S., “Multispinovyi Monte-Karlo metod”, Dalnevost. matem. zhurn., 20:2 (2020), 212–220 | DOI | MR | Zbl
[17] Le Guillou J. C., Zinn-Justin J., “Critical exponents from field theory”, Physical Review B, 21:9 (1980), 3976 | DOI | MR | Zbl
[18] Vaz C. A. F., Bland J. A. C., Lauhoff G., “Magnetism in ultrathin film structures”, Reports on Progress in Physics, 71:5 (2008), 056501 | DOI
[19] Aharony A., Harris A. B., Wiseman S., “Critical disordered systems with constraints and the inequality $\nu > 2/d$”, Phys. Rev. Lett., 81:2 (1998), 252 | DOI
[20] Marques M. I., Gonzalo J. A., “Self-averaging of random and thermally disordered diluted Ising systems”, Phys. Rev. E, 60:2 (1999), 2394 | DOI | MR