Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2023_23_2_a7, author = {V. G. Nazarov}, title = {Evaluation of the effectiveness of the hyperplane method in the problem of partial identification of an unknown substances}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {222--239}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a7/} }
TY - JOUR AU - V. G. Nazarov TI - Evaluation of the effectiveness of the hyperplane method in the problem of partial identification of an unknown substances JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 222 EP - 239 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a7/ LA - ru ID - DVMG_2023_23_2_a7 ER -
%0 Journal Article %A V. G. Nazarov %T Evaluation of the effectiveness of the hyperplane method in the problem of partial identification of an unknown substances %J Dalʹnevostočnyj matematičeskij žurnal %D 2023 %P 222-239 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a7/ %G ru %F DVMG_2023_23_2_a7
V. G. Nazarov. Evaluation of the effectiveness of the hyperplane method in the problem of partial identification of an unknown substances. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 222-239. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a7/
[1] Osama Mhmood Hamed Ahmed, YuShou Song, Zhaoyang Xie, “Material Identification Approach Based on the Counting Technique and Beam Hardening Correction Under Industrial X-Ray Computed Tomography: a Simulation Study”, Brazilian Journal of Physics, 52:26 (2022)
[2] S. P. Osipov, V. A. Udod, Wang Yanzhao, “Identification of Materials in X-Ray Inspections of Objects by the Dual-Energy Method”, Russian Journal of Nondestructive Testing, 53:8 (2017), 568–587 | DOI
[3] S. P. Osipov, S. V. Chakhlov, A. V Batranin, O. S Osipov, Trinh Van Bak, J. Kytmanov, “Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography”, NDT E International, 98 (2018), 63–69 | DOI
[4] S. P. Osipov, A. K. Temnik, S. V. Chakhlov, “Vliyanie fizicheskikh faktorov na kachestvo identifikatsii veschestv ob'ektov kontrolya vysokoenergeticheskim metodom dualnykh energii”, Defektoskopiya, 2014, no. 8, 69–77
[5] V. G. Nazarov, “Metod giperploskostei v zadache identifikatsii neizvestnogo veschestva”, Sib. zhurn. industr. matematiki, 24:3 (2021), 39–54 | Zbl
[6] V. G. Nazarov, “Zadacha chastichnoi identifikatsii neizvestnogo veschestva”, Dalnevostochnyi matematicheskii zhurnal, 19:1 (2019), 43–62 | MR | Zbl
[7] V. G. Nazarov, “Otsenka tochnosti vychislenii v zadache chastichnoi identifikatsii veschestva”, Sib. zhurn. industr. matematiki, 23:3 (2020), 91–104 | Zbl
[8] J. H. Hubbell , S. M. Seltzer, Tables of X–Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, NISTIR-5632. National Institute of Standards and Technology., Nat. Inst. of Standard and Technology, Gaithersburg, Gaithersburg. MD., 1995
[9] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, XCOM: Photon Cross Section Database, National Institute of Standards and Technology, Gaithersburg, 2005
[10] D. S. Anikonov, A. E .Kovtanyuk, I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht-Boston, 2002 | MR | Zbl
[11] V. G. Nazarov, “Nekotorye otsenki oshibok v zadachakh radiografii sploshnoi sredy”, Dalnevostochnyi matematicheskii zhurnal, 20:1 (2020), 82–89 | MR | Zbl
[12] A. I. Volkov, I. M. Zharskii, Bolshoi khimicheskii spravochnik, Sovremennaya shkola, Minsk, 2005
[13] I. L. Knunyants (gl. red.), Khimicheskaya entsiklopediya, V 5t., Sov. entsikl., M., 1988