The problem of finding the kernels in the system of integro-differential acoustics equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 190-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

For reduced to the canonical system of integro-differential equations of acoustics, a direct problem is posed, which consists in determining the velocity of the perturbed medium and the pressure and the inverse problem of finding the diagonal memory matrix. The problems are reduced to a closed system of integral equations of the second kind of the Volterra type with respect to the solution of the direct problem and unknowns of the inverse problem. The method of contraction mappings in the space of continuous functions with an exponential weighted norm is applied to this system. Existence and uniqueness theorems for solutions to problems in the global sense are proved.
@article{DVMG_2023_23_2_a5,
     author = {D. K. Durdiev and Kh. Kh. Turdiev},
     title = {The problem of finding the kernels in the system of integro-differential acoustics equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {190--210},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - Kh. Kh. Turdiev
TI  - The problem of finding the kernels in the system of integro-differential acoustics equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 190
EP  - 210
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/
LA  - ru
ID  - DVMG_2023_23_2_a5
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A Kh. Kh. Turdiev
%T The problem of finding the kernels in the system of integro-differential acoustics equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 190-210
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/
%G ru
%F DVMG_2023_23_2_a5
D. K. Durdiev; Kh. Kh. Turdiev. The problem of finding the kernels in the system of integro-differential acoustics equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 190-210. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/

[1] V. Volterra, Teoriya funktsionalov, integralnykh i integro–differentsialnykh uravnenii, Nauka, Gl. red. fiz.–mat. liter, M., 1982

[2] Mura. Toshio, Micromechanics of defects in solids, Second, Revised Edition, Northwestern University, Evanston, IL, USA, 1987

[3] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1959 | MR

[4] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., Theory, Methods Appl., 22:1 (1994), 21–44 | DOI | MR | Zbl

[5] Z. S. Safarov, D. K. Durdiev, “Inverse Problem for an Integro-Differential Equation of Acoustics”, Differential Equations, 54:1 (2018), 134–142 | DOI | MR | Zbl

[6] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] D. K. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | MR | Zbl

[8] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | Zbl

[9] Z. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mathematical Methods in the Applied Sciences, 103:1–2 (2018), 118–132 | MR | Zbl

[10] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki., 97:6 (2015), 855–867 | DOI | Zbl

[11] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, Journal of Inverse and Ill-Posed Problems, 28:1 (2020), 43–52 | DOI | MR | Zbl

[12] U. D. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industr. matem., 22:4 (2019), 26–32 | MR

[13] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43 | MR

[14] D. K. Durdiev, Z. R. Bozorov, “Zadacha opredeleniya yadra integrodifferentsialnogo volnovogo uravneniya so slabo gorizontalnoi odnorodnostyu”, Dalnevost. matem. zhurn., 13:2 (2013), 209–221 | MR | Zbl

[15] V. G. Romanov, “Zadacha ob opredeleniya yadra v uravnenii vyazkouprugosti”, Dokl. AN, 446:1 (2012), 18–20 | Zbl

[16] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Mathematical Methods in the Applied Sciences, 43:15 (2020), 8776–8796 | DOI | MR | Zbl

[17] V. G. Romanov, “Inverse problems for equation with a memory”, Eurasian Jour. of Math. and Computer Applications, 2:4 (2014), 51–80 | DOI

[18] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integro-differentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matem., 23:2 (2020), 63–80 | Zbl

[19] M. K. Teshaev, I. I. Safarov, M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes”, Journal of the Serbian Society for Computational Mechanics, 13:2 (2019), 104–115 | DOI

[20] M. K. Teshaev, “Realization of servo-constraints by electromechanical servosystems”, Russian Mathematics, 54 (2010), 38–44 | DOI | MR | Zbl

[21] U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sib. Electron. Mat. Izv., 17 (2020), 179–189 | DOI | MR | Zbl

[22] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian journal of mathematical and computer applications, 8:2 (2020), 4–16 | DOI

[23] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | MR | Zbl

[24] D. K. Durdiev, Kh. Kh. Turdiev, “Obratnaya zadacha dlya giperbolicheskoi sistemy pervogo poryadka s pamyatyu”, Differentsialnye uravneniya, 56:12 (2020), 1666–1675 | DOI | Zbl

[25] D. K. Durdiev, Kh. Kh. Turdiev, “The problem of finding the kernels in the system of integro-differential Maxwell's equations”, Sib. Zh. Ind. Math., 24:2 (2021), 38–61 | DOI | MR | Zbl

[26] S. K. Godunov, Uravneniya matematicheskoi fiziki, 2-e izd., Nauka, M., 1979 | MR

[27] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[28] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Gl. red. fiz.-mat. lit., M., 1989 | MR

[29] A. A. Kilbas, Integralnye uravneniya: kurs lektsii, Minsk, 2005

[30] F. R. Gantmakher, Teoriya matrits, Nauka, Gl. red. fiz.-mat. lit., M., 1988 | MR