Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2023_23_2_a5, author = {D. K. Durdiev and Kh. Kh. Turdiev}, title = {The problem of finding the kernels in the system of integro-differential acoustics equations}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {190--210}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/} }
TY - JOUR AU - D. K. Durdiev AU - Kh. Kh. Turdiev TI - The problem of finding the kernels in the system of integro-differential acoustics equations JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 190 EP - 210 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/ LA - ru ID - DVMG_2023_23_2_a5 ER -
%0 Journal Article %A D. K. Durdiev %A Kh. Kh. Turdiev %T The problem of finding the kernels in the system of integro-differential acoustics equations %J Dalʹnevostočnyj matematičeskij žurnal %D 2023 %P 190-210 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/ %G ru %F DVMG_2023_23_2_a5
D. K. Durdiev; Kh. Kh. Turdiev. The problem of finding the kernels in the system of integro-differential acoustics equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 2, pp. 190-210. http://geodesic.mathdoc.fr/item/DVMG_2023_23_2_a5/
[1] V. Volterra, Teoriya funktsionalov, integralnykh i integro–differentsialnykh uravnenii, Nauka, Gl. red. fiz.–mat. liter, M., 1982
[2] Mura. Toshio, Micromechanics of defects in solids, Second, Revised Edition, Northwestern University, Evanston, IL, USA, 1987
[3] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1959 | MR
[4] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., Theory, Methods Appl., 22:1 (1994), 21–44 | DOI | MR | Zbl
[5] Z. S. Safarov, D. K. Durdiev, “Inverse Problem for an Integro-Differential Equation of Acoustics”, Differential Equations, 54:1 (2018), 134–142 | DOI | MR | Zbl
[6] J. Janno, L. Von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] D. K. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | MR | Zbl
[8] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | Zbl
[9] Z. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mathematical Methods in the Applied Sciences, 103:1–2 (2018), 118–132 | MR | Zbl
[10] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki., 97:6 (2015), 855–867 | DOI | Zbl
[11] D. K. Durdiev, Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, Journal of Inverse and Ill-Posed Problems, 28:1 (2020), 43–52 | DOI | MR | Zbl
[12] U. D. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industr. matem., 22:4 (2019), 26–32 | MR
[13] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43 | MR
[14] D. K. Durdiev, Z. R. Bozorov, “Zadacha opredeleniya yadra integrodifferentsialnogo volnovogo uravneniya so slabo gorizontalnoi odnorodnostyu”, Dalnevost. matem. zhurn., 13:2 (2013), 209–221 | MR | Zbl
[15] V. G. Romanov, “Zadacha ob opredeleniya yadra v uravnenii vyazkouprugosti”, Dokl. AN, 446:1 (2012), 18–20 | Zbl
[16] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Mathematical Methods in the Applied Sciences, 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[17] V. G. Romanov, “Inverse problems for equation with a memory”, Eurasian Jour. of Math. and Computer Applications, 2:4 (2014), 51–80 | DOI
[18] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integro-differentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matem., 23:2 (2020), 63–80 | Zbl
[19] M. K. Teshaev, I. I. Safarov, M. Mirsaidov, “Oscillations of multilayer viscoelastic composite toroidal pipes”, Journal of the Serbian Society for Computational Mechanics, 13:2 (2019), 104–115 | DOI
[20] M. K. Teshaev, “Realization of servo-constraints by electromechanical servosystems”, Russian Mathematics, 54 (2010), 38–44 | DOI | MR | Zbl
[21] U. D. Durdiev, “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sib. Electron. Mat. Izv., 17 (2020), 179–189 | DOI | MR | Zbl
[22] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian journal of mathematical and computer applications, 8:2 (2020), 4–16 | DOI
[23] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | MR | Zbl
[24] D. K. Durdiev, Kh. Kh. Turdiev, “Obratnaya zadacha dlya giperbolicheskoi sistemy pervogo poryadka s pamyatyu”, Differentsialnye uravneniya, 56:12 (2020), 1666–1675 | DOI | Zbl
[25] D. K. Durdiev, Kh. Kh. Turdiev, “The problem of finding the kernels in the system of integro-differential Maxwell's equations”, Sib. Zh. Ind. Math., 24:2 (2021), 38–61 | DOI | MR | Zbl
[26] S. K. Godunov, Uravneniya matematicheskoi fiziki, 2-e izd., Nauka, M., 1979 | MR
[27] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[28] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Gl. red. fiz.-mat. lit., M., 1989 | MR
[29] A. A. Kilbas, Integralnye uravneniya: kurs lektsii, Minsk, 2005
[30] F. R. Gantmakher, Teoriya matrits, Nauka, Gl. red. fiz.-mat. lit., M., 1988 | MR