On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 55-80

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with the problem of describing holomorphically homogeneous real hypersurfaces in $ \Bbb C^4 $ we study in this article the 7-dimensional orbits of real Lie algebras in this space. By the well-known Morozov theorem, any nilpotent 7-dimensional Lie algebra has at least a 4-dimensional Abelian ideal. The article considers nilpotent indecomposable 7-dimensional Lie algebras containing a 5-dimensional Abelian ideal. It is proved that in the space $ \Bbb C^4 $ all the orbits of such algebras are Levi degenerate. This statement covers 73 algebras from the complete list of 149 indecomposable 7-dimensional nilpotent Lie algebras.
@article{DVMG_2023_23_1_a5,
     author = {A. V. Loboda and R. S. Akopyan and V. V. Krutskikh},
     title = {On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {55--80},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/}
}
TY  - JOUR
AU  - A. V. Loboda
AU  - R. S. Akopyan
AU  - V. V. Krutskikh
TI  - On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 55
EP  - 80
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/
LA  - ru
ID  - DVMG_2023_23_1_a5
ER  - 
%0 Journal Article
%A A. V. Loboda
%A R. S. Akopyan
%A V. V. Krutskikh
%T On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 55-80
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/
%G ru
%F DVMG_2023_23_1_a5
A. V. Loboda; R. S. Akopyan; V. V. Krutskikh. On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 55-80. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/