On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 55-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with the problem of describing holomorphically homogeneous real hypersurfaces in $ \Bbb C^4 $ we study in this article the 7-dimensional orbits of real Lie algebras in this space. By the well-known Morozov theorem, any nilpotent 7-dimensional Lie algebra has at least a 4-dimensional Abelian ideal. The article considers nilpotent indecomposable 7-dimensional Lie algebras containing a 5-dimensional Abelian ideal. It is proved that in the space $ \Bbb C^4 $ all the orbits of such algebras are Levi degenerate. This statement covers 73 algebras from the complete list of 149 indecomposable 7-dimensional nilpotent Lie algebras.
@article{DVMG_2023_23_1_a5,
     author = {A. V. Loboda and R. S. Akopyan and V. V. Krutskikh},
     title = {On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {55--80},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/}
}
TY  - JOUR
AU  - A. V. Loboda
AU  - R. S. Akopyan
AU  - V. V. Krutskikh
TI  - On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 55
EP  - 80
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/
LA  - ru
ID  - DVMG_2023_23_1_a5
ER  - 
%0 Journal Article
%A A. V. Loboda
%A R. S. Akopyan
%A V. V. Krutskikh
%T On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 55-80
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/
%G ru
%F DVMG_2023_23_1_a5
A. V. Loboda; R. S. Akopyan; V. V. Krutskikh. On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 55-80. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/

[1] E. Cartan, “Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl., 11 (1933), 17–90 | DOI | MR

[2] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl

[3] B. Dourov, A. Medvedev, D. The, “Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3 $”, Mathematische Zeitschrift, 297 (2021), 669–-709 | DOI | MR

[4] A. V. Loboda, “Golomorfno-odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$”, Tr. MMO, 81:2 (2020), 61–136

[5] B. Doubrov, J. Merker, D. The, Classification of simply transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, 2020, arXiv: 2010.06334v1 | MR | Zbl

[6] V. A. Le, T. A. Nguyen, T. T. C. Nguyen, T. T. M. Nguyen, T. N. Vo, Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals, 2021, arXiv: 2107.03990 | MR

[7] C. Seeley, “7-dimensional nilpotent Lie algebras”, Trans. Amer. Math. Soc., 335:2 (1993), 479–496 | MR | Zbl

[8] M. P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R), PhD thesis, Univ. Waterloo, Waterloo, 1998 http://www.semanticscholar.org/paper/f72dbfc64f72f7b3d9a740c77181ae2186d58e22

[9] P. Ghanam, G. Thompson, “Nonsolvable subalgebras of $ gl(4,\mathbb{R}) $”, Journal of Mathematics, 2016 (2016), 17 https://www.hindawi.com/journals/jmath/2016/2570147/ | DOI | MR | Zbl

[10] G. M. Mubarakzyanov, “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Matem., 1963, no. 3, 99–106 | Zbl

[11] L. Shnobl, P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, AMS, RI, 2014 | DOI | MR

[12] V. I. Lagno, S. V. Spichak, V. I. Stognii, Simmetriinyi analiz uravnenii evolyutsionnogo tipa, Moskva – Izhevsk, 2004

[13] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 360–372 | DOI | MR

[14] A. V. Loboda, “O zadache opisaniya golomorfno odnorodnykh veschestvennykh giperpoverkhnostei 4-mernykh kompleksnykh prostranstv”, Tr. Mat. in-ta im. V. A. Steklova RAN, 331 (2020), 194–212 | DOI

[15] A. V. Loboda, V. K. Kaverina, “O vyrozhdennosti orbit razlozhimykh algebr Li”, Ufimskii matem.zhurnal, 2022, no. 1, 57–83

[16] V. V. Krutskikh, A. V. Loboda,, “Kompyuternaya obrabotka dannykh v odnoi mnogomernoi matematicheskoi zadache”, Materialy mezhdunarodnoi online-konferentsii “Informatika: problemy, metody, tekhnologii” (IPMT-2021), OOO «VELBORN», Voronezh, 2021, 411–419

[17] B. A. Dubrovin, C. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, Moskva, 1986

[18] B. V. Shabat, Vvedenie v kompleksnyi analiz, ch.2, Nauka, Moskva, 1976 | MR

[19] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[20] A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., VINITI, Moskva, 2019, 86–-115 | DOI | MR