On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 55-80
Voir la notice de l'article provenant de la source Math-Net.Ru
In connection with the problem of describing holomorphically homogeneous real
hypersurfaces in $ \Bbb C^4 $
we study in this article the 7-dimensional orbits of real Lie algebras in this space.
By the well-known Morozov theorem, any nilpotent 7-dimensional Lie algebra has at least a 4-dimensional Abelian ideal.
The article considers nilpotent indecomposable 7-dimensional Lie algebras containing a 5-dimensional Abelian ideal.
It is proved that in the space $ \Bbb C^4 $ all the orbits of such algebras are Levi degenerate.
This statement covers 73 algebras from the complete list of 149 indecomposable 7-dimensional nilpotent Lie algebras.
@article{DVMG_2023_23_1_a5,
author = {A. V. Loboda and R. S. Akopyan and V. V. Krutskikh},
title = {On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {55--80},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/}
}
TY - JOUR AU - A. V. Loboda AU - R. S. Akopyan AU - V. V. Krutskikh TI - On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $, JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 55 EP - 80 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/ LA - ru ID - DVMG_2023_23_1_a5 ER -
%0 Journal Article %A A. V. Loboda %A R. S. Akopyan %A V. V. Krutskikh %T On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $, %J Dalʹnevostočnyj matematičeskij žurnal %D 2023 %P 55-80 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/ %G ru %F DVMG_2023_23_1_a5
A. V. Loboda; R. S. Akopyan; V. V. Krutskikh. On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 55-80. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a5/