Wave packets in boundary problems of quantum mechanics
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 34-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

System of two independent linear quantum equations with symbols representing polynoms of the n-th order is considered. Boundary conditions are non-linear. They functionally connect amplitudes of the direct and inverse wave functions by mapping $\Phi :I \mapsto I$. It is demonstrated that 1) if mapping $ \Phi $ is linear, the amplitude of the falling wave at $ t\rightarrow\infty $ tends to zero or infinity; 2) if $ \Phi $ is nonlinear but single-valued, at $ t\rightarrow\infty $, the amplitude of the falling wave tends to a double-periodic — constant function with one singular point per a period; 3) if $ \Phi $ is multi-valued, asymptotically periodic — constant distributions of square amplitude of the wavefunction with finite or infinite number of singularities per a period are possible. The limiting solutions of this type we shall call distributions of pre-turbulent or turbulent type. Applications to the study of the emergence of spatial-temporal bright and dark asymptotic solitons in a limited resonator with non-linear feedback between the amplitudes of two optical beams on the resonator surface are presented.
@article{DVMG_2023_23_1_a4,
     author = {I. B. Krasnyuk},
     title = {Wave packets in boundary problems of quantum mechanics},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {34--54},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a4/}
}
TY  - JOUR
AU  - I. B. Krasnyuk
TI  - Wave packets in boundary problems of quantum mechanics
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 34
EP  - 54
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a4/
LA  - ru
ID  - DVMG_2023_23_1_a4
ER  - 
%0 Journal Article
%A I. B. Krasnyuk
%T Wave packets in boundary problems of quantum mechanics
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 34-54
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a4/
%G ru
%F DVMG_2023_23_1_a4
I. B. Krasnyuk. Wave packets in boundary problems of quantum mechanics. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 34-54. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a4/

[1] V. Giiemin, S. Sternberg, Geometricheskie asimptotiki, Mir, Moskva, 1981

[2] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, Moskva, 1978

[3] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, Moskva, 1978 | MR

[4] R. Pezer, H. Buljan, G. Bavtal, O. Cohen, M. Segal, “Gap random-phase lattice solitons”, OSA Technical Digest, 13:13 (2005), 5013–5023

[5] A. N. Maimnstrov, “Opticheskie colitony”, Sorocovskii obrazovatelnyi zhurnal, 1999, no. 11, 97–102

[6] H. Buljan, M. Segev, M. Soljaci?, N. K. Efremidis, D. N. Christodoulides, “White-light solitons”, Opt. Lett., 28:14 (2003), 1239–1241 | DOI

[7] A. N. Sharkovskii, Yu. A. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986

[8] E. Yu. Romanenko, A. N. Sharkovsky, “From Boundary Value Problems to Difference Equations: A Method of Investigation of Chaotic Vibrations”, Intern. J. Bif. and Chaos, 9:07 (1999), 1285–1306 | DOI | MR | Zbl

[9] E. Yu. Romanenko, “Randomness in deterministic difference equations”, Journal of Difference Equations and Applications, 16:1 (2010), 243–268 | DOI | MR | Zbl

[10] A. N. Sharkovsky, E. Yu. Romanenko, “Turbulence: Ideal”, Encyclopedia of Nonlinear Science, Rontedge, New York, 2005, 955–957 | MR

[11] A. Avila, M. Lyubich, W. de Melo, “Regular or stochastic dynamics in real analytic families of unimodal maps”, Inventiones mathematicae, 154 (2003), 451–550 | DOI | MR | Zbl

[12] E. Yu. Romanenko, “On attractors of continuous difference equations and long-time behaviour of solutions”, J. Difference equations and Appl., 9:3-4 (2003), 263–280 | DOI | MR | Zbl

[13] A. N. Sharkovsky, E. Yu. Romanenko, “Ideal turbulence: Attractors of deterministic systems may lay in the space of random fields”, Intern. J. Bif. and Chaos, 2:1 (1982), 31–36 | DOI | MR