Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a8, author = {L. S. Grishina and A. Yu. Zhigalov and I. P. Bolodurina and E. L. Borshhuk and D. N. Begun and Yu. V. Varennikova}, title = {Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {179--184}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/} }
TY - JOUR AU - L. S. Grishina AU - A. Yu. Zhigalov AU - I. P. Bolodurina AU - E. L. Borshhuk AU - D. N. Begun AU - Yu. V. Varennikova TI - Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 179 EP - 184 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/ LA - en ID - DVMG_2022_22_2_a8 ER -
%0 Journal Article %A L. S. Grishina %A A. Yu. Zhigalov %A I. P. Bolodurina %A E. L. Borshhuk %A D. N. Begun %A Yu. V. Varennikova %T Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 179-184 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/ %G en %F DVMG_2022_22_2_a8
L. S. Grishina; A. Yu. Zhigalov; I. P. Bolodurina; E. L. Borshhuk; D. N. Begun; Yu. V. Varennikova. Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 179-184. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/
[1] D. K. Arnett, R. S. Blumenthal, M. A. Albert, A. B. Buroker, Z. D. Goldberger, E. J. Hahn, C. D. Himmelfarb, “2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines”, JACC, 140 (2019), 596–646
[2] S. Xu, T. Zhu, Zh. Zang, D. Wang, J. Hu, X. Duan, “Cardiovascular Risk Prediction Method Based on CFS Subset Evaluation and Random Forest Classification Framework”, Ann. of Math., 1 (2017), 228–232
[3] C. Krittanawong, H. Virk, S. Bangalore, Z. Wang, K. Johnson, R. Pinotti, H. Zhang, S. Kaplin, B. Narasimhan, T. Kitai, U. Baber, J. Halperin, W. Tang, “Machine learning prediction in cardiovascular diseases: a meta-analysis”, Sci Rep., 10 (2020), 16057 | DOI
[4] S. N. Pasha, D. Ramesh, S. Mohmmad, A. Harshavardhan, “Cardiovascular disease prediction using deep learning techniques and Diophantine approximation”, IOP Conf. Ser., 981 (2020), 022006 | DOI
[5] R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, P. Singh, “Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning”, Computational Intelligence and Neuroscience, 1 (2021), 8387080 | MR
[6] S. Malathi, “Prediction of cardiovascular disease using deep learning algorithms to prevent COVID-19”, Journal of Experimental Theoretical Artificial Intelligence, 100 (2021), 1–15
[7] G. E. Weissman, M. O. Harhay, R. M. Lugo, B. D. Fuchs, S. D. Halpern, M. E. Mikkelsen, “Natural Language Processing to Assess Documentation of Features of Critical Illness in Discharge Documents of Acute Respiratory Distress Syndrome Survivors”, Ann. Am. Thorac. Soc., 13 (2016), 1538–1545 | DOI
[8] A. A. Rumshisky, M. Ghassemi, T. Naumann, P. Szolovits, V. M. Castro, T. McCoy, R. H. Perlis, “Predicting early psychiatric readmission with natural language processing of narrative discharge summaries”, Transl. Psychiatry, 6:10 (2016), e921 | DOI
[9] A. N. Berman, “Natural language processing for the assessment of cardiovascular disease comorbidities: The cardio-Canary comorbidity project”, Clin Cardiol, 44:9 (2021), 1296–1304 | DOI