Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 179-184

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently, cardiovascular diseases (CVD) are the most common cause of death in the world. Artificial intelligence methods provide extensive opportunities for extracting new knowledge from the raw data of medical information systems (MIS). This study is aimed at building a model for predicting the diagnosis of CVD based on patient complaints at a doctor's appointment using natural language processing methods. The formation of the initial data set is based on a graph model of the patient's medical history with CVD according to the visit protocols. A comparative analysis of machine learning models such as the naive Bayesian classifier, the support vector machine and convolution neural networks is carried out. As a result of the experiments, the most effective model for predicting CVD has been selected.
@article{DVMG_2022_22_2_a8,
     author = {L. S. Grishina and A. Yu. Zhigalov and I. P. Bolodurina and E. L. Borshhuk and D. N. Begun and Yu. V. Varennikova},
     title = {Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {179--184},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/}
}
TY  - JOUR
AU  - L. S. Grishina
AU  - A. Yu. Zhigalov
AU  - I. P. Bolodurina
AU  - E. L. Borshhuk
AU  - D. N. Begun
AU  - Yu. V. Varennikova
TI  - Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 179
EP  - 184
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/
LA  - en
ID  - DVMG_2022_22_2_a8
ER  - 
%0 Journal Article
%A L. S. Grishina
%A A. Yu. Zhigalov
%A I. P. Bolodurina
%A E. L. Borshhuk
%A D. N. Begun
%A Yu. V. Varennikova
%T Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 179-184
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/
%G en
%F DVMG_2022_22_2_a8
L. S. Grishina; A. Yu. Zhigalov; I. P. Bolodurina; E. L. Borshhuk; D. N. Begun; Yu. V. Varennikova. Investigation of the efficiency of graph data representation for a cardiovascular disease predictive model by deep learning methods. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 179-184. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a8/