Penalty method to solve an optimal control problem for a quasilinear parabolic equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 158-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem for a quasilinear parabolic equation simulating the radiative and conductive heat transfer in a bounded three-dimensional domain under constraints on the solution in a given subdomain is considered. The solvability of the optimal control problem is proved. An algorithm for solving the problem, based on the penalty method, is proposed.
@article{DVMG_2022_22_2_a3,
     author = {A. Yu. Chebotarev and N. M. Park and P. R. Mesenev and A. E. Kovtanyuk},
     title = {Penalty method to solve an optimal control problem for a quasilinear parabolic equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {158--163},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
AU  - N. M. Park
AU  - P. R. Mesenev
AU  - A. E. Kovtanyuk
TI  - Penalty method to solve an optimal control problem for a quasilinear parabolic equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 158
EP  - 163
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a3/
LA  - en
ID  - DVMG_2022_22_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%A N. M. Park
%A P. R. Mesenev
%A A. E. Kovtanyuk
%T Penalty method to solve an optimal control problem for a quasilinear parabolic equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 158-163
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a3/
%G en
%F DVMG_2022_22_2_a3
A. Yu. Chebotarev; N. M. Park; P. R. Mesenev; A. E. Kovtanyuk. Penalty method to solve an optimal control problem for a quasilinear parabolic equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 158-163. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a3/

[1] W. S. J. Malskat, A. A. Poluektova, C. W. M. Van der Geld, H. A. M. Neumann, R. A. Weiss, C. M. A. Bruijninckx, M. J. C. Van Gemert, “Endovenous laser ablation (EVLA): A review of mechanisms, modeling outcomes, and issues for debate”, Lasers Med. Sci.., 29 (2014), 393–403 | DOI

[2] A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Astrakhantseva, A. A. Sushchenko, “Optimal control of endovenous laser ablation”, Opt. Spectrosc., 128:8 (2020), 1508–1516 | DOI

[3] A. E. Kovtanyuk, A. Yu. Chebotarev, A. A. Astrakhantseva, “Inverse extremum problem for a model of endovenous laser ablation”, J. Inv. Ill-Posed Probl., 29:3 (2021), 467–476 | DOI | MR

[4] A. Chebotarev, A. Kovtanyuk, N. Park, P. Mesenev, “Optimal control with phase constraints for a quasilinear endovenous laser ablation model”, Proceedings of the International Conference Days on Diffraction 2021, 2021, 103–108

[5] A. Kovtanyuk, A. Chebotarev, A. Degtyareva, N. Park, “Mathematical and computer modeling of endovenous laser treatment”, CEUR Workshop Proceedings, 2837, 2021, 13–23