An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 269-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes an approach for improving the quality of the attenuation coefficient reconstruction using medium irradiation with X-ray pulses of various durations. We propose a new scheme of tomographic scanning that makes it possible to reduce the contribution of the scattered component to the projection data by constructing an extrapolation approximation for a ballistic term of a radiative transfer equation solution. Numerical experiments were carried out on a specially designed digital phantom.
@article{DVMG_2022_22_2_a24,
     author = {I. P. Yarovenko and I. G. Kazantsev},
     title = {An extrapolation method for improving the linearity of {CT-values} in {X-ray} pulsed tomography},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {269--275},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/}
}
TY  - JOUR
AU  - I. P. Yarovenko
AU  - I. G. Kazantsev
TI  - An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 269
EP  - 275
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/
LA  - en
ID  - DVMG_2022_22_2_a24
ER  - 
%0 Journal Article
%A I. P. Yarovenko
%A I. G. Kazantsev
%T An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 269-275
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/
%G en
%F DVMG_2022_22_2_a24
I. P. Yarovenko; I. G. Kazantsev. An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 269-275. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/

[1] W. A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis, Erlangen, 2011

[2] P. Mah, T. E. Reeves, W. D. McDavid, “Deriving Hounsfield units using grey levels in cone beam computed tomography”, Dentomaxillofac. Radiol., 39 (2010), 323–335 | DOI

[3] R. Pauwels, R. Jacobs, S. R. Singer, M. Mupparapu, “CBCT-based bone quality assessment: are Hounsfield units applicable?”, Dentomaxillofac Radiol., 44:1 (2015), 20140238 | DOI

[4] G. Herman, F. Natterer, Mathematical Aspects of Computerized Tomography, Springer Science Business Media, Oberwolfach, 2013 | MR

[5] I. V. Prokhorov, I. P. Yarovenko, “Determination of the attenuation coefficient for the nonstationary radiative transfer equation”, Comput. Math. Math. Phys., 61:12 (2021), 2088–2101 | DOI | MR

[6] A. Kim, I. V. Prokhorov, “Theoretical and Numerical Analysis of an Initial-Boundary Value Problem for the Radiative Transfer Equation with Fresnel Matching Conditions”, Comput. Math. and Math. Phys., 58:5 (2018), 735–749 | DOI | MR