Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a24, author = {I. P. Yarovenko and I. G. Kazantsev}, title = {An extrapolation method for improving the linearity of {CT-values} in {X-ray} pulsed tomography}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {269--275}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/} }
TY - JOUR AU - I. P. Yarovenko AU - I. G. Kazantsev TI - An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 269 EP - 275 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/ LA - en ID - DVMG_2022_22_2_a24 ER -
%0 Journal Article %A I. P. Yarovenko %A I. G. Kazantsev %T An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 269-275 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/ %G en %F DVMG_2022_22_2_a24
I. P. Yarovenko; I. G. Kazantsev. An extrapolation method for improving the linearity of CT-values in X-ray pulsed tomography. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 269-275. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a24/
[1] W. A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis, Erlangen, 2011
[2] P. Mah, T. E. Reeves, W. D. McDavid, “Deriving Hounsfield units using grey levels in cone beam computed tomography”, Dentomaxillofac. Radiol., 39 (2010), 323–335 | DOI
[3] R. Pauwels, R. Jacobs, S. R. Singer, M. Mupparapu, “CBCT-based bone quality assessment: are Hounsfield units applicable?”, Dentomaxillofac Radiol., 44:1 (2015), 20140238 | DOI
[4] G. Herman, F. Natterer, Mathematical Aspects of Computerized Tomography, Springer Science Business Media, Oberwolfach, 2013 | MR
[5] I. V. Prokhorov, I. P. Yarovenko, “Determination of the attenuation coefficient for the nonstationary radiative transfer equation”, Comput. Math. Math. Phys., 61:12 (2021), 2088–2101 | DOI | MR
[6] A. Kim, I. V. Prokhorov, “Theoretical and Numerical Analysis of an Initial-Boundary Value Problem for the Radiative Transfer Equation with Fresnel Matching Conditions”, Comput. Math. and Math. Phys., 58:5 (2018), 735–749 | DOI | MR