Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a18, author = {Yu. E. Spivak}, title = {Computer design of cylindrical cloaking shell for the magnetostatics model}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {238--244}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a18/} }
TY - JOUR AU - Yu. E. Spivak TI - Computer design of cylindrical cloaking shell for the magnetostatics model JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 238 EP - 244 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a18/ LA - en ID - DVMG_2022_22_2_a18 ER -
Yu. E. Spivak. Computer design of cylindrical cloaking shell for the magnetostatics model. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 238-244. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a18/
[1] B. Wood, J. B. Pendry, “Metamaterials at zero frequency”, J. Phys. Cond. Matter, 19 (2007), 076208 | DOI
[2] J. B. Pendry, D. Shurig, D. R. Smith, “Controlling electromagnetic fields”, Science, 312 (2006), 1780–1782 | DOI | MR
[3] U. Leonhardt, “Optical conformal mapping”, Science, 312 (2006), 1777–1780 | DOI | MR
[4] A. Sanchez, C. Navau, J. Prat-Camps, D. X. Chen, “Antimagnets: controlling magnetic fields with superconductormetamaterial hybrids”, New J. Phys., 13 (2011), 093034 | DOI
[5] F. Gomory, M. Solovyov, J. Souc, C. Navau, “Experimental realization of a magnetic cloak”, Science, 335 (2012), 1466–1468 | DOI
[6] A. N. Tikhonov, Ya. V. Arsenin, Solutions of Ill-Posed Problems, Winston, New York, 1977 | MR
[7] G. V. Alekseev, D. A. Tereshko, “Optimization method in material bodies cloaking with respect to static physical fields”, J. Inv. Ill-posed Prob., 27 (2019), 845–857 | DOI | MR
[8] A. V. Lobanov, Yu. E. Spivak, “Optimization method in two-dimensional electrical cloaking problems”, Far Eastern Mathematical Journal, 19 (2019), 31–42 | MR
[9] Yu. E. Spivak, “Optimization method in 2D magnetic cloaking problems”, Sib. Electron. Math. Rep., 16 (2019), 812–825 | MR
[10] G. V. Alekseev, Yu. E. Spivak, “Numerical analysis of two-dimensional magnetic cloaking problems based on an optimization method”, Diff. Eq., 56:9 (2020), 1219–1229 | DOI | MR
[11] G. V. Alekseev, Yu. E. Spivak, “Optimization-based numerical analysis of three-dimensional magnetic cloaking problems”, Comp. Math. Math. Phys., 61 (2021), 212–225 | DOI | MR
[12] G. V. Alekseev, Invisibility problem in acoustics, optics, and heat transfer, in Russian, Dalnauka, Vladivostok, 2016
[13] G. V. Alekseev, V. A. Levin, D. A. Tereshko, Analysis and optimization in designing invisibility devices for material bodies, in Russian, Fizmatlit, M., 2021
[14] H. Kettunen, H. Wallen, A. Sihvola, “Cloaking and magnifying using radial anisotropy”, J. Appl. Phys., 114 (2013), 110–122 | DOI
[15] S. Batool, M. Nisar, F. Mangini, F. Frezza, “Cloaking using anisotropic multilayer circular cylinder”, AIP Advanc., 10 (2020), 119904 | DOI
[16] M. R. Bonyadi, Z. Michalewicz, “Particle swarm optimization for single objective continuous space problems: A review”, Evolutionary Computation, 25 (2017), 1–54 | DOI