Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a17, author = {Y. Shuai and A. G. Maslovskaya and C. Kuttler}, title = {2D reaction-diffusion model of quorum sensing characteristics during all phases of bacterial growth}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {232--237}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a17/} }
TY - JOUR AU - Y. Shuai AU - A. G. Maslovskaya AU - C. Kuttler TI - 2D reaction-diffusion model of quorum sensing characteristics during all phases of bacterial growth JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 232 EP - 237 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a17/ LA - en ID - DVMG_2022_22_2_a17 ER -
%0 Journal Article %A Y. Shuai %A A. G. Maslovskaya %A C. Kuttler %T 2D reaction-diffusion model of quorum sensing characteristics during all phases of bacterial growth %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 232-237 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a17/ %G en %F DVMG_2022_22_2_a17
Y. Shuai; A. G. Maslovskaya; C. Kuttler. 2D reaction-diffusion model of quorum sensing characteristics during all phases of bacterial growth. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 232-237. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a17/
[1] J. D. Dockery, J. P. Keener, “A mathematical model for quorum sensing in Pseudomonas aeruginosa”, Bull. Math. Biol., 63 (2001), 1585–1639 | DOI
[2] J. Müller, C. Kuttler, B. A. Hense , M. Rothballer, A. Hartmann, “Cell-cell communication by quorum sensing and dimension-reduction”, J. Math. Biol., 53 (2006), 672–702 | DOI | MR
[3] G. Telford, D. Wheeler, P. Williams, P. T. Tomkins, P. Appleby, H. Sewell, G. S. Stewart, B. W. Bycroft, D. I. Pritchard., “The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity”, Infect Immun., 66:1 (1998), 36–42 | DOI
[4] A. B. Goryachev, “Understanding bacterial cell-cell communication with computational modeling”, Chem. Rev., 111 (2011), 238–250 | DOI
[5] J. Perez-Velazquez, M. Gölgeli, R. Garcia-Contreras, “Mathematical modelling of bacterial quorum sensing: a review”, Bull. Math. Biol., 76 (2016), 1585–1639 | DOI | MR
[6] Ch. Kuttler, “Reaction-diffusion equations and their application on bacterial communication”, Chapter 4, Handbook of Statistics, 37, 2017, 55–91 | DOI | MR
[7] Ch. Kuttler, A. Maslovskaya, “Computer simulation of communication in bacterial populations under external impact of signal-degrading enzymes”, Proc. of the CEUR “Workshop Proceedings”, 2783, 2020, 163–179
[8] Ch. Kuttler, A. Maslovskaya, “Wave effects in stochastic time lagging reaction-diffusion model of quorum-sensing in bacterial populations”, Proc. IEEE Int. Conf. Days on Diffraction, 2020, 62–67
[9] Ch. Kuttler, A. Maslovskaya, “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Applied Mathematical Modelling, 93 (2021), 360–375 | DOI | MR
[10] Ch. Kuttler, A. Maslovskaya, L. Moroz, “Numerical simulation of time-fractional diffusion-wave processes applied to communication in bacterial populations”, Proc. of the IEEE, “Days on Diffraction”, 2021, 114–119
[11] J. M. N. Llorens, A. Tormo, E. Martinez-Garcia, “Stationary phase in gram-negative bacteria”, FEMS Microbiol. Rev., 2010, 476–495 | DOI
[12] M. Peleg, M.G. Corradini, “Microbial growth curves: what the models tell us and what they cannot”, Critical Reviews in Food Science and Nutrition, 51:10 (2011), 917, 45 pp. | DOI
[13] Md. S. Munna, Z. Zeba, R. Noor, “Influence of temperature on the growth of Pseudomonas putida”, Stamford Journal of Microbiology, 5:1 (2015), 9–12 | DOI
[14] N. Shen, M. Jiang, P. Wei, “The kinetic study on the production of hydantoinase and n-carbamoylase by Pseudomonas JS-01”, Journal of Nanjing University of Chemical Technology, 23 (2001), 36–39