Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a16, author = {A. V. Rukavishnikov}, title = {Influence of weighted function exponent in {WFEM} on error of solution for hydrodynamic problems with singularity}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {225--231}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a16/} }
TY - JOUR AU - A. V. Rukavishnikov TI - Influence of weighted function exponent in WFEM on error of solution for hydrodynamic problems with singularity JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 225 EP - 231 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a16/ LA - en ID - DVMG_2022_22_2_a16 ER -
%0 Journal Article %A A. V. Rukavishnikov %T Influence of weighted function exponent in WFEM on error of solution for hydrodynamic problems with singularity %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 225-231 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a16/ %G en %F DVMG_2022_22_2_a16
A. V. Rukavishnikov. Influence of weighted function exponent in WFEM on error of solution for hydrodynamic problems with singularity. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 225-231. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a16/
[1] H. J. Choi, J. R. Kweon, “A finite element method for singular solutions of the Navier–Stokes equations on a non-convex polygon”, J. Comput. Appl. Math., 292 (2016), 342–362 | DOI | MR
[2] I. Babuska, T. Strouboulis, The finite element method and its reliability, Oxford University Press, New York, 2001 | MR
[3] V. A. Rukavishnikov, “On differentiability properties of an $R_{\nu}$-generalized solution of the Dirichlet problem”, Soviet Mathematics Doklady, 40 (1990), 653–655 | MR
[4] A. V. Rukavishnikov, V. A. Rukavishnikov, “New numerical approach for the steady-state Navier-Stokes equations with corner singularity”, Int. J. Comput. Methods, 19 (2022), 2250012 | DOI | MR
[5] V. A. Rukavishnikov, A. V. Rukavishnikov, “On the existence and uniqueness of an $R_{\nu}$-generalized solution to the Stokes problem with corner singularity”, Mathematics, 10 (2022), 1752 | DOI | MR
[6] V. A. Rukavishnikov, A. O. Mosolapov, E. I. Rukavishnikova, “Weighted finite element method for elasticity problem with a crack”, Comput. Struct., 11 (2021), 106400 | DOI
[7] V. A. Rukavishnikov, E. I. Rukavishnikova, “Error estimate FEM for the Nikol’skij–Lizorkin problem with degeneracy”, J. Comput. Appl. Math., 403 (2022), 113841 | DOI | MR
[8] V. A. Rukavishnikov, “Body of optimal parameters in the weighted finite element method for the crack problem”, J. Comput. Appl. Mech., 7 (2021), 2159–2170
[9] H. C. Elman, D. J. Silvester, A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dymamics, Oxford University Press, Oxford, 2005 | MR
[10] V. Girault, P. -A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR
[11] V. A. Rukavishnikov, A. V. Rukavishnikov, “New numerical method for the rotation form of the Oseen problem with corner singularity”, Symmetry, 11 (2019), 54 | DOI
[12] V. A. Rukavishnikov, A. V. Rukavishnikov, “The method of numerical solution of the one stationary hydrodynamics problem in convective form in L-shaped domain”, Comput. Res. Model., 12 (2020), 1291–1306 | DOI
[13] V. A. Rukavishnikov, A. V. Rukavishnikov, “On the proporties of operators of the Stokes problem with corner singularity in nonsymmetric variational formulation”, Mathematics, 10 (2022), 889 | DOI
[14] V. A. Rukavishnikov, A. V. Rukavishnikov, “Weighted finite element method for the Stokes problem with corner singularity”, J. Comput. Appl. Math., 341 (2018), 144–156 | DOI | MR
[15] V. A. Rukavishnikov, A. V. Rukavishnikov, “New approximate method for solving the Stokes problem in a domain with corner singularity”, Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw., 11 (2018), 95–108 | MR
[16] J. H. Bramble, J. E. Pasciak, A. T. Vassilev, “Analysis of the inexact Uzawa algorithm for saddle point problems”, SIAM J. Numer. Anal., 34 (1997), 1072–1092 | DOI | MR