Numerical methods for systems of diffusion and superdiffusion equations with Neumann boundary conditions and with delay
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 218-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

A feature of many mathematical models is the presence of two equations of the diffusion type with Neumann boundary conditions and the delay effect, for example, in the model of interaction between a tumor and the immune system. In this paper we construct and study the orders of convergence of analogues of the implicit method and the Crank-Nicolson method. Also, for a system of space fractional superdiffusion-type equations with delay and Neumann boundary conditions, an analogue of the Crank-Nicolson method is constructed. To approximate the two-sided fractional Riesz derivatives, the shifted Grunwald-Letnikov formulas are used; to take into account the delay effect, interpolation and extrapolation of the discrete history of the model are used.
@article{DVMG_2022_22_2_a15,
     author = {V. G. Pimenov and A. B. Lozhnikov and M. Ibrahim},
     title = {Numerical methods for systems of diffusion and superdiffusion  equations with {Neumann} boundary conditions and with delay},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {218--224},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a15/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - A. B. Lozhnikov
AU  - M. Ibrahim
TI  - Numerical methods for systems of diffusion and superdiffusion  equations with Neumann boundary conditions and with delay
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 218
EP  - 224
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a15/
LA  - en
ID  - DVMG_2022_22_2_a15
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A A. B. Lozhnikov
%A M. Ibrahim
%T Numerical methods for systems of diffusion and superdiffusion  equations with Neumann boundary conditions and with delay
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 218-224
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a15/
%G en
%F DVMG_2022_22_2_a15
V. G. Pimenov; A. B. Lozhnikov; M. Ibrahim. Numerical methods for systems of diffusion and superdiffusion  equations with Neumann boundary conditions and with delay. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 218-224. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a15/

[1] S. Kayan, H. Merdan, R. Yafia,S. Goktepe, “Bifurcation analysis of a modified tumor-immune system interaction model involving time delay”, Math. Model. Nat. Phenom., 12:5 (2017), 120–145 | DOI | MR

[2] K. M. Owalabi, “High-dimensional spatial patterns in fractional reathion-diffusion systems arising in biology”, Chaos, Solitons and Fractals, 134 (2020), 109723 | DOI | MR

[3] V. G. Pimenov, A. B. Lozhnikov, “Difference schemes for the numerical solution of the heat conduction equation with aftereffect”, Proc. Steklov Inst. Math., 275:S1 (2011), 137–148 | DOI | MR

[4] V. G. Pimenov, A. S. Hendy, “A fractional analog of Crank-Nicholson method for the two sided space fractional partial equation with functional delay”, Ural Math. Journal, 2:1 (2016), 48–57 | DOI

[5] M. M. Meerschaert, C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56:1 (2006), 80–90 | DOI | MR