Mathematical modeling of the evolutionary dynamics of plankton community
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 213-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes and studies a model of the evolutionary dynamics of plankton community. Phytoplankton is assumed to consist of two genetic groups competing for resources and differing by the trait of toxicity. Zooplankton consumes non-toxic phytoplankton due to its selective choice of food. The evolutionary scenario of the development of two different phytoplankton genotypes is shown to depend significantly on competitive intensity between them.
@article{DVMG_2022_22_2_a14,
     author = {G. P. Neverova and O. L. Zhdanova},
     title = {Mathematical modeling of the evolutionary dynamics of plankton community},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {213--217},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/}
}
TY  - JOUR
AU  - G. P. Neverova
AU  - O. L. Zhdanova
TI  - Mathematical modeling of the evolutionary dynamics of plankton community
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 213
EP  - 217
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/
LA  - en
ID  - DVMG_2022_22_2_a14
ER  - 
%0 Journal Article
%A G. P. Neverova
%A O. L. Zhdanova
%T Mathematical modeling of the evolutionary dynamics of plankton community
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 213-217
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/
%G en
%F DVMG_2022_22_2_a14
G. P. Neverova; O. L. Zhdanova. Mathematical modeling of the evolutionary dynamics of plankton community. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 213-217. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/

[1] F. Barraquand et al., “Moving forward in circles: challenges and opportunities in modelling population cycles”, Ecology letters, 20:8 (2017), 1074–1092 | DOI

[2] M. H. Cortez, J. S. Weitz, “Coevolution can reverse predator–prey cycles”, Proceedings of the National Academy of Sciences, 111:20 (2014), 7486–7491 | DOI

[3] T. Hiltunen, N. G. Hairston Jr, G. Hooker, L. E. Jones, S. P. Ellner, “A newly discovered role of evolution in previously published consumer–resource dynamics”, Ecology letters, 17:8 (2014), 915–923 | DOI

[4] M. Kulakov, G. Neverova, E. Frisman, “The Ricker competition model of two species: dynamic modes and phase multistability”, Mathematics, 10:7 (2022), 1076 | DOI | MR