Mathematical modeling of the evolutionary dynamics of plankton community
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 213-217
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper proposes and studies a model of the evolutionary dynamics of plankton community. Phytoplankton is assumed to consist of two genetic groups competing for resources and differing by the trait of toxicity. Zooplankton consumes non-toxic phytoplankton due to its selective choice of food. The evolutionary scenario of the development of two different phytoplankton genotypes is shown to depend significantly on competitive intensity between them.
@article{DVMG_2022_22_2_a14,
author = {G. P. Neverova and O. L. Zhdanova},
title = {Mathematical modeling of the evolutionary dynamics of plankton community},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {213--217},
year = {2022},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/}
}
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova TI - Mathematical modeling of the evolutionary dynamics of plankton community JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 213 EP - 217 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/ LA - en ID - DVMG_2022_22_2_a14 ER -
G. P. Neverova; O. L. Zhdanova. Mathematical modeling of the evolutionary dynamics of plankton community. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 213-217. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a14/
[1] F. Barraquand et al., “Moving forward in circles: challenges and opportunities in modelling population cycles”, Ecology letters, 20:8 (2017), 1074–1092 | DOI
[2] M. H. Cortez, J. S. Weitz, “Coevolution can reverse predator–prey cycles”, Proceedings of the National Academy of Sciences, 111:20 (2014), 7486–7491 | DOI
[3] T. Hiltunen, N. G. Hairston Jr, G. Hooker, L. E. Jones, S. P. Ellner, “A newly discovered role of evolution in previously published consumer–resource dynamics”, Ecology letters, 17:8 (2014), 915–923 | DOI
[4] M. Kulakov, G. Neverova, E. Frisman, “The Ricker competition model of two species: dynamic modes and phase multistability”, Mathematics, 10:7 (2022), 1076 | DOI | MR