Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a13, author = {L. I. Moroz}, title = {Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {207--212}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/} }
TY - JOUR AU - L. I. Moroz TI - Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 207 EP - 212 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/ LA - en ID - DVMG_2022_22_2_a13 ER -
%0 Journal Article %A L. I. Moroz %T Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 207-212 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/ %G en %F DVMG_2022_22_2_a13
L. I. Moroz. Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 207-212. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/
[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 2006 | MR
[2] C. Picioreanu, M. Loosdrecht, J. Heijnen, “A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads”, Biotechnology and Bioengineering, 57:6 (1998), 718–731 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[3] L. Frunzo, R. Garra, A. Giusti, V. Luongo, “Modeling biological systems with an improved fractional Gompertz law”, Communications in Nonlinear Science and Numerical Simulation, 74 (2019), 260–267 | DOI | MR
[4] R. Ozarslan, “Microbial survival and growth modeling in frame of nonsingular fractional derivatives”, Mathematical Methods in the Applied Sciences, 44 (2020), 2985–3003 | DOI | MR
[5] I. Bazhlekov, E. Bazhlekova, “Fractional derivative modeling of bioreaction-diffusion processes”, AIP Conference Proceedings, 2333 (2021), 060006 | DOI
[6] E.-H. Dulf, D. C. Vodnar, A. Danku, C. Muresan, O. Crisan, “Fractional-order models for biochemical processes”, Fractal and Fractional, 4:2 (2020), 1–13 | DOI
[7] S. Z. Rida, A. M. El-Sayed, A. A. Arafa, “Fractional-order models for biochemical processes”, J. Stat. Phys., 140 (2010), 797–811 | DOI | MR
[8] Ch. Kuttler, A. Maslovskaya, “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Applied Mathematical Modelling, 93 (2021), 360–375 | DOI | MR
[9] Ch. Kuttler, A. Maslovskaya, L. Moroz, “Numerical simulation of time-fractional diffusion-wave processes applied to communication in bacterial populations”, Proc. of the IEEE, “Days on Diffraction”, 2021, 114–119
[10] H. J. Eberl, D. F. Parker, M. C. Loosdrecht, “A new deterministic spatio-temporal continuum model for biofilm development”, Computational and Mathematical Methods in Medicine, 3 (2001), 1–15
[11] D. Sharma, L. Misba, A. U. Khan, “Antibiotics versus biofilm: an emerging battleground in microbial communities”, Antimicrob Resist Infect Control, 8:76 (2019), 1–10
[12] B. O. Emerenini, B. A. Hense, C. Kuttler, H. J. Eberl, “A mathematical model of quorum sensing induced biofilm detachment”, PLOS ONE, 10:7 (2015), e0132385 | DOI | MR
[13] O. Wanner, W. Gujer, “A multispecies biofilm model”, Biotechnology and Bioengineering, 28 (1986), 314–328 | DOI
[14] A. S. Ackleh, L. Ke, “Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations”, Proceedings of the American Mathematical Society, 128:12 (2000), 3483–3492 | DOI | MR
[15] M. Bause, W. Merz, “Higher order regularity and approximation of solutions to the Monod biodegradation model”, Applied Numerical Mathematics, 55:2 (2005), 154–172 | DOI | MR