Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 207-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

A time-fractional model of diffusion-wave processes is considered to describe the bacterial growth phenomenon. The 2D model is specified as an initial boundary value problem for a system of semilinear time-fractional partial differential equations. A computational scheme is based on a combination of a splitting finite difference method and an iterative procedure. Simulations are performed with the use of Matlab programming. Computational experiments allow one to examine the interactions of nutrient availability and biomass production under variation of dynamical modes of the biological system.
@article{DVMG_2022_22_2_a13,
     author = {L. I. Moroz},
     title = {Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {207--212},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/}
}
TY  - JOUR
AU  - L. I. Moroz
TI  - Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 207
EP  - 212
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/
LA  - en
ID  - DVMG_2022_22_2_a13
ER  - 
%0 Journal Article
%A L. I. Moroz
%T Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 207-212
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/
%G en
%F DVMG_2022_22_2_a13
L. I. Moroz. Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 207-212. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a13/

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 2006 | MR

[2] C. Picioreanu, M. Loosdrecht, J. Heijnen, “A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads”, Biotechnology and Bioengineering, 57:6 (1998), 718–731 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] L. Frunzo, R. Garra, A. Giusti, V. Luongo, “Modeling biological systems with an improved fractional Gompertz law”, Communications in Nonlinear Science and Numerical Simulation, 74 (2019), 260–267 | DOI | MR

[4] R. Ozarslan, “Microbial survival and growth modeling in frame of nonsingular fractional derivatives”, Mathematical Methods in the Applied Sciences, 44 (2020), 2985–3003 | DOI | MR

[5] I. Bazhlekov, E. Bazhlekova, “Fractional derivative modeling of bioreaction-diffusion processes”, AIP Conference Proceedings, 2333 (2021), 060006 | DOI

[6] E.-H. Dulf, D. C. Vodnar, A. Danku, C. Muresan, O. Crisan, “Fractional-order models for biochemical processes”, Fractal and Fractional, 4:2 (2020), 1–13 | DOI

[7] S. Z. Rida, A. M. El-Sayed, A. A. Arafa, “Fractional-order models for biochemical processes”, J. Stat. Phys., 140 (2010), 797–811 | DOI | MR

[8] Ch. Kuttler, A. Maslovskaya, “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Applied Mathematical Modelling, 93 (2021), 360–375 | DOI | MR

[9] Ch. Kuttler, A. Maslovskaya, L. Moroz, “Numerical simulation of time-fractional diffusion-wave processes applied to communication in bacterial populations”, Proc. of the IEEE, “Days on Diffraction”, 2021, 114–119

[10] H. J. Eberl, D. F. Parker, M. C. Loosdrecht, “A new deterministic spatio-temporal continuum model for biofilm development”, Computational and Mathematical Methods in Medicine, 3 (2001), 1–15

[11] D. Sharma, L. Misba, A. U. Khan, “Antibiotics versus biofilm: an emerging battleground in microbial communities”, Antimicrob Resist Infect Control, 8:76 (2019), 1–10

[12] B. O. Emerenini, B. A. Hense, C. Kuttler, H. J. Eberl, “A mathematical model of quorum sensing induced biofilm detachment”, PLOS ONE, 10:7 (2015), e0132385 | DOI | MR

[13] O. Wanner, W. Gujer, “A multispecies biofilm model”, Biotechnology and Bioengineering, 28 (1986), 314–328 | DOI

[14] A. S. Ackleh, L. Ke, “Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations”, Proceedings of the American Mathematical Society, 128:12 (2000), 3483–3492 | DOI | MR

[15] M. Bause, W. Merz, “Higher order regularity and approximation of solutions to the Monod biodegradation model”, Applied Numerical Mathematics, 55:2 (2005), 154–172 | DOI | MR