Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a12, author = {N. N. Maksimova and R. V. Brizitskii}, title = {Inverse problem of recovering the electron diffusion coefficient}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {201--206}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/} }
TY - JOUR AU - N. N. Maksimova AU - R. V. Brizitskii TI - Inverse problem of recovering the electron diffusion coefficient JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 201 EP - 206 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/ LA - en ID - DVMG_2022_22_2_a12 ER -
N. N. Maksimova; R. V. Brizitskii. Inverse problem of recovering the electron diffusion coefficient. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 201-206. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/
[1] M. Kotera, K. Yamaguchi, H. Suga, “Dynamic Simulation of Electron-Beam-Induced Charging up of Insulators”, Jpn. J. Appl. Phys., 38:12 (1999), 7176–7179 | DOI
[2] A. G. Maslovskaya, “Physical and mathematical modeling of the electron-beam-induced charging of ferroelectrics during the process of domain structure switching”, Jour. of Surface Investigation, 7:4 (2013), 680–684 | DOI
[3] A. V. Pavelchuk, A. G. Maslovskaya, “Approach to numerical implementation of the drift-diffusion model of field effects induced by a moving source”, Russ. Phys. J., 63 (2020), 105–112 | DOI
[4] B. Raftari, N. V. Budko, C. Vuik, “Self-consistence drift-diffusion-reaction model for the electron beam interaction with dielectric samples”, J. Appl. Phys., 118 (2015), 204101, 17 pp. | DOI
[5] D. S. Chezganov, D. K. Kuznetsov, V. Ya. Shur, “Simulation of spatial distribution of electric field after electron beam irradiation of $MgO$-doped $LiNbO_3$ covered by resist layer”, Ferroelectrics, 496 (2016), 70–78 | DOI
[6] A. Maslovskaya, A. Pavelchuk, “Simulation of dynamic charging processes in ferroelectrics irradiated with SEM”, Ferroelectrics, 476 (2015), 157–167 | DOI
[7] R. V. Brizitskii, N. N. Maksimova, A. G. Maslovskaya, “Theoretical analysis and numerical implementation of a stationary diffusion-drift model for charging polar dielectrics”, Comp. Math. Math. Phys., 62 (2022) (to appear) | DOI | MR
[8] G. V. Alekseev, V. G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, J. Appl. Industr. Math., 6:1 (2012), 1–5 | DOI | MR
[9] G. V. Alekseev, V. A. Levin, D. A. Tereshko, “The optimization method in design problems of spherical layered thermal shells”, Doklady Physics., 62:10 (2017), 465–469 | DOI | MR
[10] R. V. Brizitskii, Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, Inverse Ill-Posed Probl., 26:6 (2018), 821-833 | DOI | MR
[11] G. V. Alekseev, Optimization in stationary problems of heat and mass transfer and magnetic hydrodynamics., Nauch. Mir., M., 2010, 412 pp.