Inverse problem of recovering the electron diffusion coefficient
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 201-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of recovering the electron diffusion coefficient is considered. Within the framework of the optimization approach, this problem is reduced to the multiplicative control one. The solvability of the considered extremum problem is proven.
@article{DVMG_2022_22_2_a12,
     author = {N. N. Maksimova and R. V. Brizitskii},
     title = {Inverse problem of recovering the electron diffusion coefficient},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {201--206},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/}
}
TY  - JOUR
AU  - N. N. Maksimova
AU  - R. V. Brizitskii
TI  - Inverse problem of recovering the electron diffusion coefficient
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 201
EP  - 206
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/
LA  - en
ID  - DVMG_2022_22_2_a12
ER  - 
%0 Journal Article
%A N. N. Maksimova
%A R. V. Brizitskii
%T Inverse problem of recovering the electron diffusion coefficient
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 201-206
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/
%G en
%F DVMG_2022_22_2_a12
N. N. Maksimova; R. V. Brizitskii. Inverse problem of recovering the electron diffusion coefficient. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 201-206. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a12/

[1] M. Kotera, K. Yamaguchi, H. Suga, “Dynamic Simulation of Electron-Beam-Induced Charging up of Insulators”, Jpn. J. Appl. Phys., 38:12 (1999), 7176–7179 | DOI

[2] A. G. Maslovskaya, “Physical and mathematical modeling of the electron-beam-induced charging of ferroelectrics during the process of domain structure switching”, Jour. of Surface Investigation, 7:4 (2013), 680–684 | DOI

[3] A. V. Pavelchuk, A. G. Maslovskaya, “Approach to numerical implementation of the drift-diffusion model of field effects induced by a moving source”, Russ. Phys. J., 63 (2020), 105–112 | DOI

[4] B. Raftari, N. V. Budko, C. Vuik, “Self-consistence drift-diffusion-reaction model for the electron beam interaction with dielectric samples”, J. Appl. Phys., 118 (2015), 204101, 17 pp. | DOI

[5] D. S. Chezganov, D. K. Kuznetsov, V. Ya. Shur, “Simulation of spatial distribution of electric field after electron beam irradiation of $MgO$-doped $LiNbO_3$ covered by resist layer”, Ferroelectrics, 496 (2016), 70–78 | DOI

[6] A. Maslovskaya, A. Pavelchuk, “Simulation of dynamic charging processes in ferroelectrics irradiated with SEM”, Ferroelectrics, 476 (2015), 157–167 | DOI

[7] R. V. Brizitskii, N. N. Maksimova, A. G. Maslovskaya, “Theoretical analysis and numerical implementation of a stationary diffusion-drift model for charging polar dielectrics”, Comp. Math. Math. Phys., 62 (2022) (to appear) | DOI | MR

[8] G. V. Alekseev, V. G. Romanov, “One class of nonscattering acoustic shells for a model of anisotropic acoustics”, J. Appl. Industr. Math., 6:1 (2012), 1–5 | DOI | MR

[9] G. V. Alekseev, V. A. Levin, D. A. Tereshko, “The optimization method in design problems of spherical layered thermal shells”, Doklady Physics., 62:10 (2017), 465–469 | DOI | MR

[10] R. V. Brizitskii, Zh. Yu. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, Inverse Ill-Posed Probl., 26:6 (2018), 821-833 | DOI | MR

[11] G. V. Alekseev, Optimization in stationary problems of heat and mass transfer and magnetic hydrodynamics., Nauch. Mir., M., 2010, 412 pp.