Predicting subdifferential switching surface in a steady-state complex heat transfer problem using deep learning
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 190-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem of complex heat transfer have been considered in the work. A method for determination of a switching surface with subdifferential boundary conditions based on the use of deep learning has been proposed. A method uses a neural network trained on a dataset of numerical solutions of the steady-state complex heat transfer forward problems. The obtained results are verified by comparison with the numerical experiments.
@article{DVMG_2022_22_2_a10,
     author = {K. S. Kuznetsov and E. V. Amosova},
     title = {Predicting subdifferential switching surface in a steady-state complex heat transfer problem using deep learning},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {190--194},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a10/}
}
TY  - JOUR
AU  - K. S. Kuznetsov
AU  - E. V. Amosova
TI  - Predicting subdifferential switching surface in a steady-state complex heat transfer problem using deep learning
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 190
EP  - 194
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a10/
LA  - en
ID  - DVMG_2022_22_2_a10
ER  - 
%0 Journal Article
%A K. S. Kuznetsov
%A E. V. Amosova
%T Predicting subdifferential switching surface in a steady-state complex heat transfer problem using deep learning
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 190-194
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a10/
%G en
%F DVMG_2022_22_2_a10
K. S. Kuznetsov; E. V. Amosova. Predicting subdifferential switching surface in a steady-state complex heat transfer problem using deep learning. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 190-194. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a10/

[1] E. Schneider, M. Sea\"{i}d, J. Janicka, A. Klar, “Validation of simplified PN models for radiative transfer in combustion systems”, Commun. Num. Meth. Eng., 24:2 (2006), 85–96 | DOI | MR

[2] R. Pinnau, G. Thömmes, “Optimal boundary control of glass cooling processes”, Math. Methods Appl. Sci., 27:11 (2004), 1261–1281 | DOI | MR

[3] M. F. Modest, Radiative heat transfer, Academic Press, New York, 2003

[4] G. V. Grenkin, “Algorithm for solving the boundary optimal control problem in a complex heat transfer model”, Far Eastern Mathematical Journal, 16:1 (2016), 24–38 | MR

[5] G. V. Grenkin, A. Yu. Chebotarev, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433 (2016), 1243–1260 | DOI | MR

[6] A. Yu. Chebotarev, G. V. Grenkin, A. E Kovtanyuk, “Unique solvability of a subdifferential boundary value problem for complex heat transfer equations”, Far Eastern Mathematical Journal, 16:2 (2016), 229–236 | MR

[7] F. Hecht, “New development in FreeFem++”, J. Num. Math., 20:3-4 (2012), 251–265 | MR