Theoretical analysis of cloaking problem for 3D model of heat conduction
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 143-149

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct and extremal problems for the 3D heat conduction model are formulated which are associated with designing spherical thermal cloaking devices. The solvability of both problems is proved. An optimality system is constructed that describes the necessary conditions for an extremum. Some properties of optimal solutions which are consequence of the structure of the optimality system are established.
@article{DVMG_2022_22_2_a0,
     author = {G. V. Alekseev},
     title = {Theoretical analysis of cloaking problem for {3D} model of heat conduction},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {143--149},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Theoretical analysis of cloaking problem for 3D model of heat conduction
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 143
EP  - 149
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a0/
LA  - en
ID  - DVMG_2022_22_2_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Theoretical analysis of cloaking problem for 3D model of heat conduction
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 143-149
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a0/
%G en
%F DVMG_2022_22_2_a0
G. V. Alekseev. Theoretical analysis of cloaking problem for 3D model of heat conduction. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 143-149. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a0/