A criterion for the approximation of a semicontinuous functional by Lipschitz functionals
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 84-90
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved in [1, 2] that a functional semi-continuous from below and bounded from below in the metric space X is represented as the limit of a non-decreasing family of Lipschitz functionals. In the lemma from [3], a sufficient condition for such a representation is given for a function semi-continuous from below with respect to one of the variables in a finite-dimensional space. This paper contains a criterion for approximation of a semi-continuous functional from below in a metric space by Lipschitz functionals.
@article{DVMG_2022_22_1_a7,
author = {V. Ya. Prudnikov and A. G. Podgaev},
title = {A criterion for the approximation of a semicontinuous functional by {Lipschitz} functionals},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {84--90},
year = {2022},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/}
}
TY - JOUR AU - V. Ya. Prudnikov AU - A. G. Podgaev TI - A criterion for the approximation of a semicontinuous functional by Lipschitz functionals JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 84 EP - 90 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/ LA - ru ID - DVMG_2022_22_1_a7 ER -
V. Ya. Prudnikov; A. G. Podgaev. A criterion for the approximation of a semicontinuous functional by Lipschitz functionals. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 84-90. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/
[1] F. Khausdorf, Teoriya mnozhestv, Ob'edinen. nauchn.-tekhn. izd-vo NKTP SSSR, Gl. red. tekhn.-teoret. lit., M.-L., 1937
[2] V. V. Gorokhovik, “O predstavlenii polunepreryvnykh sverkhu funktsii, opredelennykh na beskonechnomernykh normirovannykh prostranstvakh, v vide nizhnikh ogibayuschikh semeistv vypuklykh funktsii”, Tr. IMM Ur.O RAN., 23:1 (2017), 88–102 | MR
[3] V. Ya. Prudnikov, “Neravenstvo Iensena v idealnom prostranstve”, Sib. zhurn. industr. matem., 10:2 (2007), 119–127 | Zbl
[4] Zh. -P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, Moskva, 1988 | MR