A criterion for the approximation of a semicontinuous functional by Lipschitz functionals
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 84-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in [1, 2] that a functional semi-continuous from below and bounded from below in the metric space X is represented as the limit of a non-decreasing family of Lipschitz functionals. In the lemma from [3], a sufficient condition for such a representation is given for a function semi-continuous from below with respect to one of the variables in a finite-dimensional space. This paper contains a criterion for approximation of a semi-continuous functional from below in a metric space by Lipschitz functionals.
@article{DVMG_2022_22_1_a7,
     author = {V. Ya. Prudnikov and A. G. Podgaev},
     title = {A criterion for the approximation of a semicontinuous functional by {Lipschitz} functionals},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {84--90},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/}
}
TY  - JOUR
AU  - V. Ya. Prudnikov
AU  - A. G. Podgaev
TI  - A criterion for the approximation of a semicontinuous functional by Lipschitz functionals
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 84
EP  - 90
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/
LA  - ru
ID  - DVMG_2022_22_1_a7
ER  - 
%0 Journal Article
%A V. Ya. Prudnikov
%A A. G. Podgaev
%T A criterion for the approximation of a semicontinuous functional by Lipschitz functionals
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 84-90
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/
%G ru
%F DVMG_2022_22_1_a7
V. Ya. Prudnikov; A. G. Podgaev. A criterion for the approximation of a semicontinuous functional by Lipschitz functionals. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 84-90. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a7/

[1] F. Khausdorf, Teoriya mnozhestv, Ob'edinen. nauchn.-tekhn. izd-vo NKTP SSSR, Gl. red. tekhn.-teoret. lit., M.-L., 1937

[2] V. V. Gorokhovik, “O predstavlenii polunepreryvnykh sverkhu funktsii, opredelennykh na beskonechnomernykh normirovannykh prostranstvakh, v vide nizhnikh ogibayuschikh semeistv vypuklykh funktsii”, Tr. IMM Ur.O RAN., 23:1 (2017), 88–102 | MR

[3] V. Ya. Prudnikov, “Neravenstvo Iensena v idealnom prostranstve”, Sib. zhurn. industr. matem., 10:2 (2007), 119–127 | Zbl

[4] Zh. -P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, Moskva, 1988 | MR