On the conformal capacity of a spatial condenser with spherical plates
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 76-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Condencers with spherical plates are considered, the radii of which depend on the parameter r. It is shown that the conformal capacity of such condencers is a multiplicatively convex function of r. As a corollary, it has been established that some special functions related to capacity have a similar property.
@article{DVMG_2022_22_1_a6,
     author = {E. G. Prilepkina},
     title = {On the conformal capacity of a spatial condenser with spherical plates},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {76--83},
     year = {2022},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a6/}
}
TY  - JOUR
AU  - E. G. Prilepkina
TI  - On the conformal capacity of a spatial condenser with spherical plates
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 76
EP  - 83
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a6/
LA  - ru
ID  - DVMG_2022_22_1_a6
ER  - 
%0 Journal Article
%A E. G. Prilepkina
%T On the conformal capacity of a spatial condenser with spherical plates
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 76-83
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a6/
%G ru
%F DVMG_2022_22_1_a6
E. G. Prilepkina. On the conformal capacity of a spatial condenser with spherical plates. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 76-83. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a6/

[1] V. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014 | MR | Zbl

[2] J. Hesse, “A $p$-extremal length and $p$-capacity equalit”, Ark. mat., 13:1 (1975), 131–144 | DOI | MR | Zbl

[3] M. Vuorinen, “Conformal geometry and quasiregular mappings”, Lecture Notes in Mathematics, Springer-Verlag, 1988 | DOI | MR

[4] V. N. Dubinin, “Nekotorye svoistva vnutrennego privedennogo modulya”, Sib. matem. zhurn., 35:4 (1994), 774–-792 | MR | Zbl

[5] B. E. Levitskii, “Reduced $p$-modulus and the interior $p$-harmonic radius”, Dokl. Akad. Nauk SSSR, 316:4 (1991), 812–815 | MR | Zbl

[6] V. N. Dubinin, E. G. Prilepkina, “On extremal decomposition of $n$-space domains”, J. Math. Sci., 105:4 (2001), 2180–2189 | DOI | MR | Zbl

[7] G. D. Anderson, M.,K. Vamanamurthy and M. Vuorinen, “Special functions of quasiconformal theory”, Expositiones Mathematicae, 7 (1989), 97–138 | MR

[8] E. G. Prilepkina, A. S. Afanaseva-Grigoreva, “O konformnoi metrike krugovogo koltsa v n-mernom evklidovom prostranstve”, Dalnevost. matem. zhurn., 18:2 (2018), 233–-241 | MR | Zbl

[9] R. Laugesen, “Extremal problems involving logarithmic and Green capacity”, Duke Math. J., 70:2 (1993), 445–480 | DOI | MR | Zbl

[10] S. Pouliasis, “Concavity of condenser energy under boundary variations”, J. Geom. Anal., 31:8 (2021), 7726–7740 | DOI | MR | Zbl

[11] P. R. Garabedian, M. Schiffer, “Convexity of domain functionals”, J. Anal. Math., 2 (1953), 281–368 | DOI | MR | Zbl

[12] A. S. Afanaseva-Grigoreva, E. G. Prilepkina, “On the $p$-harmonic radii of circular sectors”, Issues Anal., 10(28):3 (2021), 3-–14 | DOI | MR

[13] V. N. Dubinin, “Green energy and extremal decompositions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 38–44 | DOI | MR | Zbl

[14] V. N. Dubinin, E. G. Prilepkina, “Optimal Green energy points on the circles in $d$-space”, Journal of Mathematical Analysis and Applications, 499:2 (2021), 125055 | DOI | MR | Zbl