The dynamics of ``imperial tails'' on the example of coronavirus infection
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 38-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the dynamics of rank distributions is discussed on the example of a study of the incidence of COVID-19 in Primorsky Krai in 2020-2022, taking into account the periodicity of the morbidity process, and an explanation of the nature of "imperial tails" is given. It is shown that the chosen modeling method is within the framework of the general trend of research into the development of the pandemic process, and the found characteristic parameters are close to classical estimates.
@article{DVMG_2022_22_1_a2,
     author = {M. A. Guzev and E. Y. Nikitina},
     title = {The dynamics of ``imperial tails'' on the example of coronavirus infection},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {38--50},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a2/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - E. Y. Nikitina
TI  - The dynamics of ``imperial tails'' on the example of coronavirus infection
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 38
EP  - 50
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a2/
LA  - ru
ID  - DVMG_2022_22_1_a2
ER  - 
%0 Journal Article
%A M. A. Guzev
%A E. Y. Nikitina
%T The dynamics of ``imperial tails'' on the example of coronavirus infection
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 38-50
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a2/
%G ru
%F DVMG_2022_22_1_a2
M. A. Guzev; E. Y. Nikitina. The dynamics of ``imperial tails'' on the example of coronavirus infection. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 38-50. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a2/

[1] F. Auerbach, “The Law of Population Concentration”, Petermann's Geographical Communications, 1913 http://hdl.handle.net/11858/00-001M-0000-002A-4926-E

[2] A. J. Lotka, “The Frequency Distribution of Scientific Productivity”, Journal of the Washington Academy of Sciences, 16 (1926)

[3] H. A. Gleason, “The Significance of Raunkiaer’s Law of Frequency”, Ecology, 10:4 (1929) | DOI

[4] B. Gutenberg and C. F. Richter, “Frequency of earthquakes in California”, Bull. Seismol. Soc. Am., 34 (1944)

[5] G. K. Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley, Cambridge, MA, 1949

[6] A. Clauset , C. R. Shalizi and M. E. J. Newman, “Power-law distributions in empirical data”, SIAM Rev., 2009, no. 51 | DOI | MR

[7] S. T. Piantadosi, “Zipf’s word frequency law in natural language: A critical review and future directions”, Psychonomic Bulletin Review, 21:5 (2014) | DOI

[8] R. B. Lees, “Logic, language and information theory by Leo Apostel”, Benoit Mandelbrot and Albert Morf Source: Language, 35:2 (1959) | DOI

[9] A. N. olmogorov, “Tri podkhoda k opredeleniyu ponyatiya “kolichestvo informatsii””, Probl. peredachi inform., 1:1 (1965) | MR

[10] Yu. A. Shreider, “O vozmozhnosti teoreticheskogo vyvoda statisticheskikh zakonomernostei teksta (k obosnovaniyu zakona Tsipfa)”, Probl. peredachi inform., 3:1 (1967)

[11] V. Dunaev, “O rangovykh raspredeleniyakh v klassifikatsii”, Nauchno-tekhnicheskaya informatsiya, 2 (1984) http://dunaevv1.narod.ru/other/classrunk.htm | Zbl

[12] V. P. Maslov, “On a General Theorem of Set Theory Leading to the Gibbs, Bose-Einstein, and Pareto Distributions as well as to the Zipf-Mandelbrot Law for the Stock Market”, Mathematical Notes, 78(5) (2005) | MR

[13] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2006

[14] V. P. Maslov, “Zakon «otsutstviya predpochteniya» i sootvetstvuyuschie raspredeleniya v chastotnoi teorii veroyatnostei”, Mat. zametki, 80:2 (2006)

[15] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Mat. zametki, 80:5 (2006) | MR

[16] M.Ȧ. Guzev, E. Yu. Nikitina, E. V. Chernysh, “V.P.Maslov’s Approach to the Analysis of Rank Distributions”, Russian Journal of Mathematical Physics, 28:1 (2021) | DOI | MR

[17] M. A. Guzev, N. N. Kradin, E. Yu. Nikitina, “The Imperial Curve of Large Polities”, Social Evolution History, 16:2 (2017)

[18] O. I. Krivorotko, S. I. Kabanikhin, Matematicheskie modeli rasprostraneniya COVID-19, 2022, arXiv: 2112.05315

[19] B. Blasius, “Power-law distribution in the number of confirmed COVID-19 cases”, Chaos, 30 (2020) | DOI | MR