Micromechanical model of high-energy materials to the curing
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 119-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

During curing process of elastomeric composites residual stresses inevitably develop and play fn important role in the final mechanical properties of composites. This work at a better understanding the effects of macro-level factors, including temperature, degree of cure variation and mechanical stains on micro-scale stresses with modification the Model Arruda-Boyce, and a Representative Volume Element to predict technology stresses in matrix.
@article{DVMG_2022_22_1_a11,
     author = {K. A. Chekhonin},
     title = {Micromechanical model of high-energy materials to the curing},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a11/}
}
TY  - JOUR
AU  - K. A. Chekhonin
TI  - Micromechanical model of high-energy materials to the curing
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 119
EP  - 124
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a11/
LA  - ru
ID  - DVMG_2022_22_1_a11
ER  - 
%0 Journal Article
%A K. A. Chekhonin
%T Micromechanical model of high-energy materials to the curing
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 119-124
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a11/
%G ru
%F DVMG_2022_22_1_a11
K. A. Chekhonin. Micromechanical model of high-energy materials to the curing. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 119-124. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a11/

[1] K. A. Chekhonin, “Osnovy teorii otverzhdeniya tverdykh raketnykh topliv”, Vestnik ITPS, 12:1 (2016), 131–145

[2] K. A. Chekhonin, V. D. Vlasenko, “The Role of Curing Stresses in Subsequent Response and Damage of High Energetic materials”, The conference on High Energy Processes in Condensed Matter (HEPCM)-2021, Journal of Physics: Conference Series, 2021, 55–63

[3] E. M. Arruda, M. C. Boyce, “A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, Journal of the Mechanics and Physics of Solids, 41 (1993), 389–412 | DOI | Zbl

[4] K. A. Chekhonin, “Termodinamicheski soglasovannaya svyazannaya model otverzhdeniya elastomerov pri bolshikh deformatsiyakh”, Dalnevostochnyi matematicheskii zhurnal, 22:1 (2022), 107–118

[5] K. A. Chekhonin, V. D. Vlasenko, “Numerical Modelling of Compression Cure High-Filled Polimer Material”, Journal of Siberian Federal University. Mathematics $\$ Physics, 14:6 (2021), 805–814 | DOI | Zbl