Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_1_a11, author = {K. A. Chekhonin}, title = {Micromechanical model of high-energy materials to the curing}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {119--124}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a11/} }
K. A. Chekhonin. Micromechanical model of high-energy materials to the curing. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 119-124. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a11/
[1] K. A. Chekhonin, “Osnovy teorii otverzhdeniya tverdykh raketnykh topliv”, Vestnik ITPS, 12:1 (2016), 131–145
[2] K. A. Chekhonin, V. D. Vlasenko, “The Role of Curing Stresses in Subsequent Response and Damage of High Energetic materials”, The conference on High Energy Processes in Condensed Matter (HEPCM)-2021, Journal of Physics: Conference Series, 2021, 55–63
[3] E. M. Arruda, M. C. Boyce, “A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, Journal of the Mechanics and Physics of Solids, 41 (1993), 389–412 | DOI | Zbl
[4] K. A. Chekhonin, “Termodinamicheski soglasovannaya svyazannaya model otverzhdeniya elastomerov pri bolshikh deformatsiyakh”, Dalnevostochnyi matematicheskii zhurnal, 22:1 (2022), 107–118
[5] K. A. Chekhonin, V. D. Vlasenko, “Numerical Modelling of Compression Cure High-Filled Polimer Material”, Journal of Siberian Federal University. Mathematics $\$ Physics, 14:6 (2021), 805–814 | DOI | Zbl