A thermodynamical conform for the curing coupling in elastomer at large strains
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 107-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of a two-component medium, the phenomenological approach is used to develop a system of constitutive equations describing the thermomechanical behavior of elastomers during curing. This model is designed to describe the stress-strain states in the temperature range comprising the intervals of phase and relaxation transitions at lage strains within a rigorous termodinamical framework. The results of numerical experiments demonstrating the possibility of describing the characteristic properties of deformation processes typical of elastomers are given.
@article{DVMG_2022_22_1_a10,
     author = {K. A. Chekhonin},
     title = {A thermodynamical conform for the curing coupling in elastomer at large strains},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {107--118},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a10/}
}
TY  - JOUR
AU  - K. A. Chekhonin
TI  - A thermodynamical conform for the curing coupling in elastomer at large strains
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 107
EP  - 118
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a10/
LA  - ru
ID  - DVMG_2022_22_1_a10
ER  - 
%0 Journal Article
%A K. A. Chekhonin
%T A thermodynamical conform for the curing coupling in elastomer at large strains
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 107-118
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a10/
%G ru
%F DVMG_2022_22_1_a10
K. A. Chekhonin. A thermodynamical conform for the curing coupling in elastomer at large strains. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 107-118. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a10/

[1] N. Kh. Arutyunyan, A. V. Manzhirov, V. E. Naumov, Kontaktnye zadachi mekhaniki rastuschikh tel, Nauka, M., 1991, 176 pp. | MR

[2] N. Kh. Arutyunyan, A. D. Drozdov, V. E. Naumov, Mekhanika rastuschikh vyazkouprugoplasticheskikh tel, Nauka, M., 1987, 471 pp.

[3] A. A. Ilyushin, B. E. Pobedrya, Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970, 280 pp. | MR

[4] V. V. Moskvitin, Soprotivlenie vyazkouprugikh materialov, Nauka, M., 1972, 328 pp.

[5] L. A. Golotina, V. P. Matveenko, I. N. Shardakov, “Analysis of deformation process characteristics in amorphous-crystalline polymers”, Mechanics of Solids, 47 (2012), 634–340 | DOI

[6] K. Kannan, K. Rajagopal, “A thermodynamical framework for chemically reacting systems”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 62 (2011), 331–363 | DOI | MR | Zbl

[7] S. A. Chester, L. Anand, “A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels”, Journal of the Mechanics and Physics of Solids, 59:10 (2011), 1978–2006 | DOI | MR | Zbl

[8] A. V. Amirkhizi, J. Isaacs, J. McGee, S. Nemat-Nasser, “An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects”, Philosophical Magazine, 86 (2006), 5847–5866 | DOI

[9] A. Amin, A. Lion, S. Sekita, Y. Okui, “Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification”, International Journal of Plasticity, 22:9 (2006), 1610–1657 | DOI | Zbl

[10] J. Plagge, M. Kluppel, “A physically based model of stress softening and hysteresis of filled rubber including rate- and temperature dependency”, International Journal of Plasticity, 89 (2017), 173–196 | DOI

[11] E. M. Arruda, M. C. Boyce, “A 3-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, Journal of the Mechanics and Physics of Solids, 41 (1993), 389–412 | DOI | Zbl

[12] M. Andre, P. Wriggers, “Thermo-mechanical behaviour of rubber materials during vulcanization”, International Journal of Solids and Structures, 42:1617 (2005), 4758–4778 | DOI | Zbl

[13] K. A. Chekhonin, V. D. Vlasenko, “Numerical Modelling of Compression Cure High-Filled Polimer Material”, Journal of Siberian Federal University. Mathematics $\$ Physics, 14:6 (2021), 805–814 | DOI | Zbl

[14] K. A. Chekhonin, V. D. Vlasenko, “Gradientnyi algoritm optimizatsii temperaturno-konversionnoi zadachi pri otverzhdenii vysokonapolnennykh polimernykh materialov”, Informatika i sistemy upravleniya, 4:62 (2019), 58–70 | DOI

[15] K. A. Chekhonin, V. D. Vlasenko, “The role of curing stresses in subsequent response and damage of elastomer composites”, International Conference on Computational Mechanics and Modern Applied Software Systems (CMMASS'2021), Journal of Physics: Conference Series, 2021, 68–75

[16] K. A. Chekhonin, V. D. Vlasenko, “The Role of Curing Stresses in Subsequent Response and Damage of High Energetic materials”, The conference on High Energy Processes in Condensed Matter (HEPCM)-2021, Journal of Physics: Conference Series, 2021, 55–63

[17] V. K. Bulgakov, K. A. Chekhonin, “Modeling of a 3D Problem of compression forming system “Composite shell – low compressible consolidating Filler””, J. Mathematical Modeling, 4 (2002), 121–131

[18] K. A. Chekhonin, “Osnovy teorii otverzhdeniya tverdykh raketnykh topliv”, Vestnik ITPS, 12:1 (2016), 131–145

[19] L. R. Herrmann, “Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem”, AIAA J., 3 (1965), 1896–1900 | DOI | MR

[20] E. Reissner, “On a variational principle for elastic displacements and pressure Incompressible Materials by a Variational Theorem”, J. Appl. Mech., 51 (1984), 444–445 | DOI | Zbl

[21] V. K. Bulgakov, K. A. Chekhonin, Osnovy teorii metoda smeshannykh konechnykh elementov, Izd-vo Khabar. tekhn. un-t, Khabarovsk, 1999, 357 pp. | MR