Heat flow calculation for a harmonic model of a one-dimensional crystal
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 28-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional non-dissipative harmonic chain of particles is considered, located between two thermal reservoirs. Using the fundamental solution of the one-dimensional harmonic model, an analytical representation is obtained for the discrete expression of the heat flux. Time averaging was performed, which allows taking into account the stationary characteristics of the heat transfer process. It is shown that the averaged heat flux includes two physically different components. The first one is proportional to the temperature difference between the reservoirs and characterizes the heat transfer along the chain. The second one determines the initial value of the flow when the temperatures of the tanks are equal.
@article{DVMG_2022_22_1_a1,
     author = {M. A. Guzev and A. A. Dmitriev},
     title = {Heat flow calculation for a harmonic model of a one-dimensional crystal},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {28--37},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - A. A. Dmitriev
TI  - Heat flow calculation for a harmonic model of a one-dimensional crystal
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 28
EP  - 37
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/
LA  - ru
ID  - DVMG_2022_22_1_a1
ER  - 
%0 Journal Article
%A M. A. Guzev
%A A. A. Dmitriev
%T Heat flow calculation for a harmonic model of a one-dimensional crystal
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 28-37
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/
%G ru
%F DVMG_2022_22_1_a1
M. A. Guzev; A. A. Dmitriev. Heat flow calculation for a harmonic model of a one-dimensional crystal. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 28-37. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/

[1] G. E. Uhlenbeck, L. S. Ornstein, “On the Theory of the Brownian Motion”, Phys. Rev., 36 (1930), 823–841 | DOI | Zbl

[2] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Physics Reports, 377 (2003), 1–80 | DOI | MR

[3] F. Bonetto, J. L. Lebowitz, J. Lukkarinen, “Fourier's Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs”, Journal of Statistical Physics, 116 (2004), 783–-813 | DOI | MR | Zbl

[4] A. Dhar, R. Dandekar, “Heat transport and current fluctuations in harmonic crystals”, Physica A: Statistical Mechanics and its Applications, 418 (2015), 49–64 | DOI | MR | Zbl

[5] Guzev M. A., Gorbunov A. V., “Struktura teplovogo potoka dlya chastits Ornshteina–Ulenbeka odnomernoi garmonicheskoi tsepochki”, Dalnevostochnyi matem. zhurnal, 21:2 (2021), 180-–193 | MR | Zbl

[6] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Academic PressSpringer Verlag, Berlin, Heidelberg, 1991 | MR

[7] F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier’s law: A challenge to theorists”, Mathematical Physics, 2000, 128–150, Imperial College Press, London | MR | Zbl

[8] A. M. Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle”, DAN, 464:2 (2015), 162–166 | MR

[9] M. A. Guzev, A. A. Dmitriev, “Razlichnye formy predstavleniya resheniya odnomernoi garmonicheskoi modeli kristalla”, Dalnevostochnyi matem. zhurnal, 17:1 (2017), 30–47 | MR | Zbl