Heat flow calculation for a harmonic model of a one-dimensional crystal
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 28-37
Voir la notice de l'article provenant de la source Math-Net.Ru
A one-dimensional non-dissipative harmonic chain of particles is considered, located between two thermal reservoirs.
Using the fundamental solution of the one-dimensional harmonic model, an analytical representation is obtained for the discrete expression of the heat flux.
Time averaging was performed, which allows taking into account the stationary characteristics of the heat transfer process.
It is shown that the averaged heat flux includes two physically different components. The first one is proportional to the temperature
difference between the reservoirs and characterizes the heat transfer along the chain. The second one determines the initial value of the flow when
the temperatures of the tanks are equal.
@article{DVMG_2022_22_1_a1,
author = {M. A. Guzev and A. A. Dmitriev},
title = {Heat flow calculation for a harmonic model of a one-dimensional crystal},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {28--37},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/}
}
TY - JOUR AU - M. A. Guzev AU - A. A. Dmitriev TI - Heat flow calculation for a harmonic model of a one-dimensional crystal JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 28 EP - 37 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/ LA - ru ID - DVMG_2022_22_1_a1 ER -
M. A. Guzev; A. A. Dmitriev. Heat flow calculation for a harmonic model of a one-dimensional crystal. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 28-37. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a1/