Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 3-27

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a non-local boundary value problem for a multidimensional parabolic equation with integral boundary conditions. To solve the problem, we obtain an a priori estimate in differential form, which implies the uniqueness and stability of the solution with respect to the right-hand side and initial data on the layer in the $L_2$-norm. For the numerical solution of a nonlocal boundary value problem, a locally one-dimensional (economical) difference scheme by A.A. Samarskii with the order of approximation $O(h^2+\tau)$, the main idea of which is to reduce the transition from layer to layer to the sequential solution of a number of one-dimensional problems in each of the coordinate directions. Using the method of energy inequalities, a priori estimates are obtained, which imply uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem in the $L_2$-norm at a rate equal to the order of approximation of the difference scheme. An algorithm for the numerical solution is constructed.
@article{DVMG_2022_22_1_a0,
     author = {Z. V. Beshtokova},
     title = {Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/}
}
TY  - JOUR
AU  - Z. V. Beshtokova
TI  - Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 3
EP  - 27
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/
LA  - ru
ID  - DVMG_2022_22_1_a0
ER  - 
%0 Journal Article
%A Z. V. Beshtokova
%T Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 3-27
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/
%G ru
%F DVMG_2022_22_1_a0
Z. V. Beshtokova. Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/