Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_1_a0, author = {Z. V. Beshtokova}, title = {Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {3--27}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/} }
TY - JOUR AU - Z. V. Beshtokova TI - Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 3 EP - 27 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/ LA - ru ID - DVMG_2022_22_1_a0 ER -
%0 Journal Article %A Z. V. Beshtokova %T Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 3-27 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/ %G ru %F DVMG_2022_22_1_a0
Z. V. Beshtokova. Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/
[1] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995
[2] T. Carleman, “Sur la theorie des equations integrates et ses applications”, Verh. Internat. Math. Kongr., 1 (1932), 138–151 | MR
[3] J. R. Canon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR
[4] L. A. Kamynin, “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024
[5] A. F. Chudnovskii, “Nekotorye korrektivy v postanovke i reshenii zadach teplo- i vlagoperenosa v pochve”, Sb. trudov AFI, 23 (1969), 41–54
[6] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR
[7] J. Douglas, H. H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI | MR | Zbl
[8] D. W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations”, J. Industr. Math. Soc., 3:1 (1955), 28–41 | DOI | MR | Zbl
[9] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | MR
[10] A. A. Samarskii, “Ob odnom ekonomichnom raznostnom metode resheniya mnogomernogo parabolicheskogo uravneniya v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 2:5 (1962), 787–811 | Zbl
[11] A. A. Samarskii, “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 266–298
[12] G. I. Marchuk, Metody rasschepleniya, Nauka, M., 1988 | MR
[13] E. G. Dyakonov, “Raznostnye skhemy s rasscheplyayuschimsya operatorom dlya mnogomernykh nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 2:4 (1962), 549–568 | Zbl
[14] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi v teorii teploprovodnosti s nelokalnymi kraevymi usloviyami”, Differents. ur-niya, 13:2 (1977), 294–304 | MR | Zbl
[15] A. I. Kozhanov, “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. ur-niya, 40:6 (2004), 763–774 | MR | Zbl
[16] L. S. Pulkina, “O razreshimosti v $L_{2}$ nelokalnoi zadachi s integralnymi usloviyami dlya giperbolicheskogo uravneniya”, Differents. ur-niya, 36:2 (2000), 279–280 | MR | Zbl
[17] A. I. Kozhanov, L. S. Pulkina, “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differents. ur-niya, 426:9 (2006), 1166–1179
[18] O. Yu. Danilkina, “Ob odnoi nelokalnoi zadache dlya uravneniya teploprovodnosti s integralnym usloviem”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1:14 (2007), 5–9 | Zbl
[19] V. A. Vodakhova, Z. Kh. Guchaeva, “Nelokalnaya zadacha dlya nagruzhennogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Usp. Sovrem. Estestv., 7 (2014), 90–92
[20] M. KH. Beshtokov, V. A. Vodakhova, “Nonlocal boundary value problems for a fractional order convection–diffusion equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 459–482 | DOI | MR | Zbl
[21] M. KH. Beshtokov, M.Z. Khudalov, “Difference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order”, Stability, Control and Differential Games, Springer Nature, 2020 | MR
[22] A. K. Bazzaev, D. K. Gutnova, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya parabolicheskogo uravneniya s nelokalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1048-1057 | Zbl
[23] Z. V. Beshtokova, M. M. Lafisheva, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernye raznostnye skhemy dlya parabolicheskikh uravnenii v sredakh, obladayuschikh pamyatyu”, Zh. vychisl. matem. i matem. fiz., 58:9 (2018), 1531–1542 | MR
[24] Z. V. Beshtokova, “Lokalno-odnomernaya raznostnaya skhema dlya resheniya odnoi nelokalnoi kraevoi zadachi dlya parabolicheskogo uravneniya v mnogomernoi oblasti”, Differents. ur-niya, 56:3 (2020), 366–379 | MR | Zbl
[25] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[26] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983
[27] V. B. Andreev, “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1218-1231 | Zbl
[28] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR
[29] D. K. Fadeev, V. N. Fadeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR