Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a non-local boundary value problem for a multidimensional parabolic equation with integral boundary conditions. To solve the problem, we obtain an a priori estimate in differential form, which implies the uniqueness and stability of the solution with respect to the right-hand side and initial data on the layer in the $L_2$-norm. For the numerical solution of a nonlocal boundary value problem, a locally one-dimensional (economical) difference scheme by A.A. Samarskii with the order of approximation $O(h^2+\tau)$, the main idea of which is to reduce the transition from layer to layer to the sequential solution of a number of one-dimensional problems in each of the coordinate directions. Using the method of energy inequalities, a priori estimates are obtained, which imply uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem in the $L_2$-norm at a rate equal to the order of approximation of the difference scheme. An algorithm for the numerical solution is constructed.
@article{DVMG_2022_22_1_a0,
     author = {Z. V. Beshtokova},
     title = {Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/}
}
TY  - JOUR
AU  - Z. V. Beshtokova
TI  - Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 3
EP  - 27
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/
LA  - ru
ID  - DVMG_2022_22_1_a0
ER  - 
%0 Journal Article
%A Z. V. Beshtokova
%T Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 3-27
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/
%G ru
%F DVMG_2022_22_1_a0
Z. V. Beshtokova. Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a0/

[1] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[2] T. Carleman, “Sur la theorie des equations integrates et ses applications”, Verh. Internat. Math. Kongr., 1 (1932), 138–151 | MR

[3] J. R. Canon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR

[4] L. A. Kamynin, “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1006–1024

[5] A. F. Chudnovskii, “Nekotorye korrektivy v postanovke i reshenii zadach teplo- i vlagoperenosa v pochve”, Sb. trudov AFI, 23 (1969), 41–54

[6] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR

[7] J. Douglas, H. H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI | MR | Zbl

[8] D. W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations”, J. Industr. Math. Soc., 3:1 (1955), 28–41 | DOI | MR | Zbl

[9] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | MR

[10] A. A. Samarskii, “Ob odnom ekonomichnom raznostnom metode resheniya mnogomernogo parabolicheskogo uravneniya v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 2:5 (1962), 787–811 | Zbl

[11] A. A. Samarskii, “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 266–298

[12] G. I. Marchuk, Metody rasschepleniya, Nauka, M., 1988 | MR

[13] E. G. Dyakonov, “Raznostnye skhemy s rasscheplyayuschimsya operatorom dlya mnogomernykh nestatsionarnykh zadach”, Zh. vychisl. matem. i matem. fiz., 2:4 (1962), 549–568 | Zbl

[14] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi v teorii teploprovodnosti s nelokalnymi kraevymi usloviyami”, Differents. ur-niya, 13:2 (1977), 294–304 | MR | Zbl

[15] A. I. Kozhanov, “Ob odnoi nelokalnoi kraevoi zadache s peremennymi koeffitsientami dlya uravnenii teploprovodnosti i Allera”, Differents. ur-niya, 40:6 (2004), 763–774 | MR | Zbl

[16] L. S. Pulkina, “O razreshimosti v $L_{2}$ nelokalnoi zadachi s integralnymi usloviyami dlya giperbolicheskogo uravneniya”, Differents. ur-niya, 36:2 (2000), 279–280 | MR | Zbl

[17] A. I. Kozhanov, L. S. Pulkina, “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differents. ur-niya, 426:9 (2006), 1166–1179

[18] O. Yu. Danilkina, “Ob odnoi nelokalnoi zadache dlya uravneniya teploprovodnosti s integralnym usloviem”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1:14 (2007), 5–9 | Zbl

[19] V. A. Vodakhova, Z. Kh. Guchaeva, “Nelokalnaya zadacha dlya nagruzhennogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Usp. Sovrem. Estestv., 7 (2014), 90–92

[20] M. KH. Beshtokov, V. A. Vodakhova, “Nonlocal boundary value problems for a fractional order convection–diffusion equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 459–482 | DOI | MR | Zbl

[21] M. KH. Beshtokov, M.Z. Khudalov, “Difference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order”, Stability, Control and Differential Games, Springer Nature, 2020 | MR

[22] A. K. Bazzaev, D. K. Gutnova, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya parabolicheskogo uravneniya s nelokalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1048-1057 | Zbl

[23] Z. V. Beshtokova, M. M. Lafisheva, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernye raznostnye skhemy dlya parabolicheskikh uravnenii v sredakh, obladayuschikh pamyatyu”, Zh. vychisl. matem. i matem. fiz., 58:9 (2018), 1531–1542 | MR

[24] Z. V. Beshtokova, “Lokalno-odnomernaya raznostnaya skhema dlya resheniya odnoi nelokalnoi kraevoi zadachi dlya parabolicheskogo uravneniya v mnogomernoi oblasti”, Differents. ur-niya, 56:3 (2020), 366–379 | MR | Zbl

[25] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[26] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983

[27] V. B. Andreev, “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1218-1231 | Zbl

[28] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR

[29] D. K. Fadeev, V. N. Fadeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR