Parallel computing of Edwards--Anderson model
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 234-246

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for parallel exact calculation of the ground state of a two-dimensional Edwards–Anderson model with free boundary conditions is given. The running time of the algorithm grows exponentially as the side of the lattice square increases. If one side of the lattice is fixed, the running time grows polynomially with increasing size of the other side. The method may find application in the theory of spin glasses, in the field of quantum computing. Performance data for the bimodal distribution is given. The distribution of spin bonds can be either bimodal or Gaussian. The method makes it possible to compute systems up to a size of 40x40.
@article{DVMG_2021_21_2_a9,
     author = {M. A. Padalko and Yu. A. Shevchenko},
     title = {Parallel computing of {Edwards--Anderson} model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {234--246},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a9/}
}
TY  - JOUR
AU  - M. A. Padalko
AU  - Yu. A. Shevchenko
TI  - Parallel computing of Edwards--Anderson model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 234
EP  - 246
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a9/
LA  - ru
ID  - DVMG_2021_21_2_a9
ER  - 
%0 Journal Article
%A M. A. Padalko
%A Yu. A. Shevchenko
%T Parallel computing of Edwards--Anderson model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 234-246
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a9/
%G ru
%F DVMG_2021_21_2_a9
M. A. Padalko; Yu. A. Shevchenko. Parallel computing of Edwards--Anderson model. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 234-246. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a9/