Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_2_a9, author = {M. A. Padalko and Yu. A. Shevchenko}, title = {Parallel computing of {Edwards--Anderson} model}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {234--246}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a9/} }
M. A. Padalko; Yu. A. Shevchenko. Parallel computing of Edwards--Anderson model. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 234-246. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a9/
[1] J. L. van Hemmen, “Classical Spin-Glass Model”, Phys. Rev. Lett., 49:6 (1982), 409–412 | DOI | MR
[2] S. F. Edwards, P. W. Anderson, “Theory of spin glasses”, Phys. F : Metal Phys., 5 (1975), 965–74 | DOI
[3] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists”, Rev. Mod. Phys., 58 (1986), 765 | DOI
[4] J. J. Hopfield, D. W. Tank, ““Neural” Computation of Decisions in Optimization Problems”, Biol. Cybern., 52 (1985), 141–152 | MR | Zbl
[5] R. McEliece, E. Posner, E. Rodemich, S. Venkatesh, “The capacity of the Hopfield associative memory”, IEEE Transactions on Information Theory, 33:4 (1987), 461–482 | DOI | MR | Zbl
[6] J. L. van Hemmen, “Spin-glass models of a neural network”, Phys. Rev. A, 34:4 (1986), 3435–3445 | DOI | MR
[7] G. S. Hartnett, E. Parker, E. Geist, “Replica symmetry breaking in bipartite spin glasses and neural networks”, Phys. Rev. E, 98:2 (2018), 022116 | DOI
[8] R. Salakhutdinov, G. Hinton, “Deep Boltzmann machines”, Phys. Rev. E, 5:2 (2009), 448–455
[9] C. Amoruso, A. K. Hartmann, M. A. Moore, “Determining energy barriers by iterated optimization: The two-dimensional Ising spin glass”, Phys. Rev. B, 73:18 (2006), 184405 | DOI
[10] B. Waclaw, Z. Burda, “Counting metastable states of Ising spin glasses on arbitrary graphs”, Phys. Rev. E, 77:4 (2008), 041114 | DOI | MR
[11] Z. Burda, A. Krzywicki, O. C. Martin, Z. Tabor, “From simple to complex networks: Inherent structures, barriers, and valleys in the context of spin glasses”, Phys. Rev. E, 73:3 (2006), 036110 | DOI
[12] S. Schnabel, W. Janke, “Distribution of metastable states of Ising spin glasses”, Phys. Rev. E, 97:17 (2018), 174204 | DOI
[13] M. W. Johnson , M. H. Amin, S. Gildert , T. Lanting , F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh , I. Perminov, C. Rich , M. C. Thom, E. Tolkacheva, C. J. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, “Quantum annealing with manufactured spins”, Nature, 473:7346 (2011), 194–8 | DOI
[14] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, J. Whittaker, “Quantum annealing with manufactured spins”, IEEE Transactions on Applied Superconductivity, 24:4 (2014), 1–20 | DOI
[15] D. Perera, F. Hamze, J. Raymond, M. Weigel, H. Katzgraber, “Computational hardness of spin-glass problems with tile-planted solutions”, Phys. Rev. E, 101:2 (2020), 023316 | DOI
[16] I. Hen, “Equation Planting: A Tool for Benchmarking Ising Machines”, Phys. Rev. Applied, 12:1 (2019), 011003 | DOI
[17] D. Pierangeli, M. Rafayelyan, C. Conti, S. Gigan, “Scalable Spin-Glass Optical Simulator”, Phys. Rev. Applied, 15:3 (2019), 034087 | DOI
[18] T. Kadowaki, H. Nishimori, “Quantum annealing in the transverse Ising model”, Phys. Rev. E, 58:5 (2019), 5355–5363 | DOI
[19] G. E. Santoro, R. Martonak, E. Tosatti, R. Car, “Theory of Quantum Annealing of an Ising Spin Glass”, Phys. Rev. Applied, 295:5564 (2002), 2427–2430
[20] J. Machta, “Population annealing with weighted averages: A Monte Carlo method for rough free-energy landscapes”, Phys. Rev. E, 82:2 (2010), 026704 | DOI
[21] J. Houdayer, O. C. Martin, “Hierarchical approach for computing spin glass ground states”, Phys. Rev. E, 64:5 (2001), 056704 | DOI
[22] W. Wang, J. Machta, H. G. Katzgraber, “Population annealing: Theory and application in spin glasses”, Phys. Rev. E, 92:6 (2015), 063307 | DOI
[23] D. P. Morelo, A. Ramirez-Pastor, F. Rom, “Ground-state energy and entropy of the two-dimensional Edwards – Anderson”, Physica A: Statistical Mechanics and its Applications, 391 (2011)
[24] N. Hatano, “Evidence for the double degeneracy of the ground state in the three-dimensional $\pm$J spin glass”, Phys. Rev. B, 66 (2002) | DOI
[25] A. Galluccio, “New Algorithm for the Ising Problem: Partition Function for Finite Lattice Graphs”, Phys. Rev. Lett., 84:26 (2000), 5924–5927 | DOI
[26] A. K. Hartmann, H. Rieger, New Optimization Algorithms in Physics, Wiley-VCH, Berlin, 2004 | Zbl
[27] A. K.Hartmann, “Cluster-exact approximation of spin glass ground states”, Physica A, 224:480 (1996)
[28] A. K. Hartmann, “Ground States of Two-Dimensional Ising Spin Glasses: Fast Algorithms, Recent Developments and a Ferromagnet-Spin Glass Mixture”, J Stat Phys, 144:519 (2011) | Zbl
[29] G. Pardella, F. Liers, “Exact Ground States of Large Two-Dimensional Planar Ising Spin Glasses”, Physical Review. E, Statistical, nonlinear, and soft matter physics, 78 (2011), 056705 | DOI | MR
[30] B. Kaufman, “Crystal statistics. ii. partition function evaluated by spinor analysis”, Phys. Rev., 78 (1949), 1232–1243 | DOI
[31] M. Suzuki, “Transfer-matrix method and Monte Carlo simulation in quantum spin systems”, Phys. Rev. B., 31:5 (1985), 2957–2965 | DOI
[32] M. Suzuki, “Generalized Trotter's Formula and Systematic Approximants of Exponential Operators and Inner Derivations with Applications to Many-Body Problems. Commun”, Math. Phys., 51 (1976), 183–190 | DOI | Zbl