Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_2_a7, author = {E. N. Lomakina and M. S. Sarychev}, title = {The estimates of the {Schatten--Neumann} norms of one class of integral operators}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {215--230}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/} }
TY - JOUR AU - E. N. Lomakina AU - M. S. Sarychev TI - The estimates of the Schatten--Neumann norms of one class of integral operators JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 215 EP - 230 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/ LA - ru ID - DVMG_2021_21_2_a7 ER -
%0 Journal Article %A E. N. Lomakina %A M. S. Sarychev %T The estimates of the Schatten--Neumann norms of one class of integral operators %J Dalʹnevostočnyj matematičeskij žurnal %D 2021 %P 215-230 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/ %G ru %F DVMG_2021_21_2_a7
E. N. Lomakina; M. S. Sarychev. The estimates of the Schatten--Neumann norms of one class of integral operators. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 215-230. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/
[1] A. Pich, Operatornye idealy, Mir, M., 1982
[2] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[3] H. König, Eigenvalue distribution of compact operators, v. 16, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1986 | DOI
[4] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy–type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | Zbl
[5] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc. (2), 53 (1996), 369–382 | DOI | MR | Zbl
[6] E. N. Lomakina, “Ob otsenkakh norm operatora Khardi, deistvuyuschego v prostranstvakh Lorentsa”, Dalnevostoch. matem. zhurn., 20:2 (2020), 191–211 | MR | Zbl
[7] C. Bennett, R. Sharpley, Interpolation of Operators, v. 129, Pure and Applied Mathematics, Academic Press, Boston, 1988
[8] S. Barza, V. Kolyada V., J. Soria, “Sharp constants related to the triangle inequality in Lorentz spaces”, Trans. Amer. Math. Soc., 361:10 (2009), 5555–5574 | DOI | MR | Zbl
[9] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl
[10] D. E. Edmunds, P. Gurka, L. Pick, “Compactness of Hardy-type integral operators in weighted Banach function spaces”, Studia Math., 109 (1994), 73–90 | MR | Zbl
[11] E. N. Lomakina, M. S. Sarychev, “Otsenki s-chisel integralnogo operatora, deistvuyuschie iz prostranstv Lebega v prostranstva Lorentsa”, Informatsionnye tekhnologii i vysokoproizvoditelnye vychisleniya, Materialy VI mezhdunarodnoi nauchno-prakticheskoi konferentsii (Khabarovsk, 14-16 sentyabrya 2021), 2021, 55–63
[12] E. N. Lomakina, M. G. Nasyrova, V. V. Nasyrov, “O nekotorykh chislakh operatora Khardi v prostranstvakh Lorentsa”, Dalnevostoch. matem. zhurn., 21:1 (2021), 56–78 | MR