The estimates of the Schatten–Neumann norms of one class of integral operators
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 215-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers an integral operator acting from Lebesque spaces to Lorentz spaces. The conditions are found under which the compact operator belongs to the Shatten–Neumann classes.
@article{DVMG_2021_21_2_a7,
     author = {E. N. Lomakina and M. S. Sarychev},
     title = {The estimates of the {Schatten{\textendash}Neumann} norms of one class of integral operators},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {215--230},
     year = {2021},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/}
}
TY  - JOUR
AU  - E. N. Lomakina
AU  - M. S. Sarychev
TI  - The estimates of the Schatten–Neumann norms of one class of integral operators
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 215
EP  - 230
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/
LA  - ru
ID  - DVMG_2021_21_2_a7
ER  - 
%0 Journal Article
%A E. N. Lomakina
%A M. S. Sarychev
%T The estimates of the Schatten–Neumann norms of one class of integral operators
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 215-230
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/
%G ru
%F DVMG_2021_21_2_a7
E. N. Lomakina; M. S. Sarychev. The estimates of the Schatten–Neumann norms of one class of integral operators. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 215-230. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a7/

[1] A. Pich, Operatornye idealy, Mir, M., 1982

[2] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[3] H. König, Eigenvalue distribution of compact operators, v. 16, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1986 | DOI

[4] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy–type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | Zbl

[5] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc. (2), 53 (1996), 369–382 | DOI | MR | Zbl

[6] E. N. Lomakina, “Ob otsenkakh norm operatora Khardi, deistvuyuschego v prostranstvakh Lorentsa”, Dalnevostoch. matem. zhurn., 20:2 (2020), 191–211 | MR | Zbl

[7] C. Bennett, R. Sharpley, Interpolation of Operators, v. 129, Pure and Applied Mathematics, Academic Press, Boston, 1988

[8] S. Barza, V. Kolyada V., J. Soria, “Sharp constants related to the triangle inequality in Lorentz spaces”, Trans. Amer. Math. Soc., 361:10 (2009), 5555–5574 | DOI | MR | Zbl

[9] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl

[10] D. E. Edmunds, P. Gurka, L. Pick, “Compactness of Hardy-type integral operators in weighted Banach function spaces”, Studia Math., 109 (1994), 73–90 | MR | Zbl

[11] E. N. Lomakina, M. S. Sarychev, “Otsenki s-chisel integralnogo operatora, deistvuyuschie iz prostranstv Lebega v prostranstva Lorentsa”, Informatsionnye tekhnologii i vysokoproizvoditelnye vychisleniya, Materialy VI mezhdunarodnoi nauchno-prakticheskoi konferentsii (Khabarovsk, 14-16 sentyabrya 2021), 2021, 55–63

[12] E. N. Lomakina, M. G. Nasyrova, V. V. Nasyrov, “O nekotorykh chislakh operatora Khardi v prostranstvakh Lorentsa”, Dalnevostoch. matem. zhurn., 21:1 (2021), 56–78 | MR