On two relations characterizing the golden ratio
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 194-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. G. Zhuravlev found two relations associated with the golden ratio: $\tau=\frac{1+\sqrt{5}}{2}$: $[([i\tau]+1)\tau]=[i\tau^2]+1$ and $[[i\tau]\tau]+1=[i\tau^2]$. We give a new elementary proof of these relations and show that they give a characterization of the golden ratio. Further we consider satisfability of our relations for finite sets of $i$-s and establish some forcing property for this situation.
@article{DVMG_2021_21_2_a5,
     author = {A. A. Zhukova and A. V. Shutov},
     title = {On two relations characterizing the golden ratio},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {194--202},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a5/}
}
TY  - JOUR
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - On two relations characterizing the golden ratio
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 194
EP  - 202
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a5/
LA  - ru
ID  - DVMG_2021_21_2_a5
ER  - 
%0 Journal Article
%A A. A. Zhukova
%A A. V. Shutov
%T On two relations characterizing the golden ratio
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 194-202
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a5/
%G ru
%F DVMG_2021_21_2_a5
A. A. Zhukova; A. V. Shutov. On two relations characterizing the golden ratio. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 194-202. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a5/

[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izvestiya RAN. Seriya matematicheskaya, 71:2 (2007), 89–122 | MR | Zbl

[2] A. V. Shutov, “Perenormirovki vraschenii okruzhnosti”, Chebyshevskii sbornik, 5:4 (2004), 125–143 | MR | Zbl

[3] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, BINOM. Laboratoriya znanii, M., 2009

[4] E. Zeckendorf, “Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bulletin de la Société Royale des de Liège, 41 (1972) | MR