On two relations characterizing the golden ratio
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 194-202
Cet article a éte moissonné depuis la source Math-Net.Ru
V. G. Zhuravlev found two relations associated with the golden ratio: $\tau=\frac{1+\sqrt{5}}{2}$: $[([i\tau]+1)\tau]=[i\tau^2]+1$ and $[[i\tau]\tau]+1=[i\tau^2]$. We give a new elementary proof of these relations and show that they give a characterization of the golden ratio. Further we consider satisfability of our relations for finite sets of $i$-s and establish some forcing property for this situation.
@article{DVMG_2021_21_2_a5,
author = {A. A. Zhukova and A. V. Shutov},
title = {On two relations characterizing the golden ratio},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {194--202},
year = {2021},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a5/}
}
A. A. Zhukova; A. V. Shutov. On two relations characterizing the golden ratio. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 194-202. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a5/
[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izvestiya RAN. Seriya matematicheskaya, 71:2 (2007), 89–122 | MR | Zbl
[2] A. V. Shutov, “Perenormirovki vraschenii okruzhnosti”, Chebyshevskii sbornik, 5:4 (2004), 125–143 | MR | Zbl
[3] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika. Osnovanie informatiki, BINOM. Laboratoriya znanii, M., 2009
[4] E. Zeckendorf, “Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bulletin de la Société Royale des de Liège, 41 (1972) | MR