Covariant hydrodynamics of Hamiltonian systems
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 166-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of hydrodynamic reduction of non-autonomous Hamiltonian mechanics (V. Kozlov, 1983) is presented in the geometric formalism of bundles over the time axis $R$. In this formalism, time is one of the coordinates, not a parameter; the connections describe reference frames and velocity fields of mechanical systems. The equations of the theory are presented in a form that is invariant with respect to time-dependent coordinate transformations and the choice of reference frames.
@article{DVMG_2021_21_2_a3,
     author = {A. I. Gudimenko},
     title = {Covariant hydrodynamics of {Hamiltonian} systems},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {166--179},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a3/}
}
TY  - JOUR
AU  - A. I. Gudimenko
TI  - Covariant hydrodynamics of Hamiltonian systems
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 166
EP  - 179
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a3/
LA  - ru
ID  - DVMG_2021_21_2_a3
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%T Covariant hydrodynamics of Hamiltonian systems
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 166-179
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a3/
%G ru
%F DVMG_2021_21_2_a3
A. I. Gudimenko. Covariant hydrodynamics of Hamiltonian systems. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 166-179. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a3/

[1] V. V. Kozlov, “Gidrodinamika gamiltonovykh sistem”, Vestnik Mosk. Un-ta. Ser. Matem., Mekhan., 1983, no. 6, 10–22 | Zbl

[2] B. V. Kozlov, Obschaya teoriya vikhrei, Institut kompyuternykh issledovanii, M., Izhevsk, 2013, Pervoe izdanie knigi vyshlo v 1998

[3] G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scientific, Singapore, 1995

[4] G. Sardanashvily, “Hamiltonian time-dependent mechanics”, J. Math. Phys., 39:5 (1998), 2714–2729 | DOI | MR | Zbl

[5] G. Giachetta, L. Mangiarotti, and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, Singapore, 1997 | Zbl

[6] N. Román-Roy, “Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories”, SIGMA, 5 (2009), 100 | Zbl

[7] J. Berra-Montiel et al., “A review on geometric formulations for classical field theory: the Bonzom–Livine model for gravity”, Class. Quantum Grav., 38:135012 (2021) | MR | Zbl

[8] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989 | Zbl

[9] I. Kolár, P. Michor, and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993 | Zbl

[10] G. Sardanashvily, Advanced Differential Geometry for Theoreticians, LAP LAMBERT Academic Publishing, 2013

[11] D. Krupka, Introduction to Global Variational Geometry, Atlantis Press, 2015 | Zbl

[12] G. Giachetta, L. Mangiarotti, and G. Sardanashvily, Geometric Formulation of Classical and Quantum Mechanics, World Scientific, Singapore, 2011 | Zbl

[13] G. Sardanashvily, Noether’s Theorems. Applications in Mechanics and Field Theory, Atlantis Press, 2016 | Zbl

[14] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, New Jersey, 1951 | Zbl

[15] M. de León, J. Marín-Solano, and J. C. Marrero, “A geometrical approach to classical field theories: a constraint algorithm for singular theories”, New Developments in Differential Geometry, eds. L. Tamassi and J. Szenthe, Kluwer Acad. Publ., Dordrecht, 1996

[16] E. Kartan, Integralnye invarianty, URSS, M., 1998

[17] L. Mangiarotti and M. Modugno, “Fibered spaces, jet spaces and connections for field theories”, Proc. Int. Meeting on Geometry and Physics (Florence, 1982), eds. M. Modugno, Pitagora Editrice, Bologna, 1983, 135–165

[18] J. E. Marsden, T. Ratiu, and R. Abraham, Manifolds, Tensor Analysis, and Applications, Springer, 2007