A generalized Dilworth and Gleason theorem
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 257-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem of R. P. Dilworth and A. M.Gleason is a generalization of a Cantor theorem. We propose and proof the generalized Dilworth and Gleason theorem for functors with codomain $K/D$.
@article{DVMG_2021_21_2_a11,
     author = {E. E. Skurikhin},
     title = {A generalized {Dilworth} and {Gleason} theorem},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {257--267},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a11/}
}
TY  - JOUR
AU  - E. E. Skurikhin
TI  - A generalized Dilworth and Gleason theorem
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 257
EP  - 267
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a11/
LA  - ru
ID  - DVMG_2021_21_2_a11
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%T A generalized Dilworth and Gleason theorem
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 257-267
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a11/
%G ru
%F DVMG_2021_21_2_a11
E. E. Skurikhin. A generalized Dilworth and Gleason theorem. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 257-267. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a11/

[1] R. P. Dilworth, A. M. Gleason, “A generalized Cantor theorem”, Proc. Amer. Math. Soc, 13 (1962), 704–705 | DOI | MR | Zbl

[2] P. Kon, Universalnaya algebra, Mir, M., 1968

[3] A. Grothendieck (with M. Artin and J.-L. Verdier), Seminaire Geometrie Algebrique 4 [SGA4], Theorie de topos et cohomologie etale de schemas, v. 269, 270, Lect. Notes in Math., Springer, Heidelberg, 1972 | DOI

[4] S. Maklein, Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004

[5] E. E. Skurikhin, “Predpuchki mnozhestv i deistviya polugrupp”, Dalnevostochnyi matematicheskii zhurnal, 19:1 (2019), 63–74 | MR | Zbl