Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_2_a11, author = {E. E. Skurikhin}, title = {A generalized {Dilworth} and {Gleason} theorem}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {257--267}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a11/} }
E. E. Skurikhin. A generalized Dilworth and Gleason theorem. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 257-267. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a11/
[1] R. P. Dilworth, A. M. Gleason, “A generalized Cantor theorem”, Proc. Amer. Math. Soc, 13 (1962), 704–705 | DOI | MR | Zbl
[2] P. Kon, Universalnaya algebra, Mir, M., 1968
[3] A. Grothendieck (with M. Artin and J.-L. Verdier), Seminaire Geometrie Algebrique 4 [SGA4], Theorie de topos et cohomologie etale de schemas, v. 269, 270, Lect. Notes in Math., Springer, Heidelberg, 1972 | DOI
[4] S. Maklein, Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004
[5] E. E. Skurikhin, “Predpuchki mnozhestv i deistviya polugrupp”, Dalnevostochnyi matematicheskii zhurnal, 19:1 (2019), 63–74 | MR | Zbl