The Fekete-Szego problem by a variational method
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 133-150
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the well-known Fekete and Szego problem. The paper investigate the problem in sufficient detail using some new observations by the classical method of internal variations, developed at the Tomsk School of Complex Analysis. One particular case is considered. We carried out complete qualitative analysis of the functional-differential equation relative boundary mapping. We completely solved the problem for the real parameter.
@article{DVMG_2021_21_2_a1,
author = {Ya. V. Borisova and I. A. Kolesnikov and S. A. Kopanev and G. D. Sadritdinova},
title = {The {Fekete-Szego} problem by a variational method},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {133--150},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/}
}
TY - JOUR AU - Ya. V. Borisova AU - I. A. Kolesnikov AU - S. A. Kopanev AU - G. D. Sadritdinova TI - The Fekete-Szego problem by a variational method JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 133 EP - 150 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/ LA - ru ID - DVMG_2021_21_2_a1 ER -
%0 Journal Article %A Ya. V. Borisova %A I. A. Kolesnikov %A S. A. Kopanev %A G. D. Sadritdinova %T The Fekete-Szego problem by a variational method %J Dalʹnevostočnyj matematičeskij žurnal %D 2021 %P 133-150 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/ %G ru %F DVMG_2021_21_2_a1
Ya. V. Borisova; I. A. Kolesnikov; S. A. Kopanev; G. D. Sadritdinova. The Fekete-Szego problem by a variational method. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 133-150. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/