Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_2_a1, author = {Ya. V. Borisova and I. A. Kolesnikov and S. A. Kopanev and G. D. Sadritdinova}, title = {The {Fekete-Szego} problem by a variational method}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {133--150}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/} }
TY - JOUR AU - Ya. V. Borisova AU - I. A. Kolesnikov AU - S. A. Kopanev AU - G. D. Sadritdinova TI - The Fekete-Szego problem by a variational method JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 133 EP - 150 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/ LA - ru ID - DVMG_2021_21_2_a1 ER -
%0 Journal Article %A Ya. V. Borisova %A I. A. Kolesnikov %A S. A. Kopanev %A G. D. Sadritdinova %T The Fekete-Szego problem by a variational method %J Dalʹnevostočnyj matematičeskij žurnal %D 2021 %P 133-150 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/ %G ru %F DVMG_2021_21_2_a1
Ya. V. Borisova; I. A. Kolesnikov; S. A. Kopanev; G. D. Sadritdinova. The Fekete-Szego problem by a variational method. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 133-150. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a1/
[1] M. Fekete, G. Szegö, “Eine Bemerkung über ungerade schlichte Funktionen”, J.London Math. Soc., 8:2 (1933), 85–89 | DOI | MR
[2] P. L. Duren, Univalent functions, Springer-Verlag, 1983 | Zbl
[3] G. M. Goluzin, “Nekotorye voprosy teorii odnolistnykh funktsii”, Tr. MIAN SSSR, 27 (1949), 3–110 | MR
[4] J. A. Jenkins, “On certain coefficients of univalent functions”, Analytic Functions. Princeton University Press, 1960, 159–194 | Zbl
[5] A. Pfluger, “The Fekete-Szegö inequality for complex parameters”, Complex Variables, 7 (1986), 149–160 | Zbl
[6] I. A. Aleksandrov, “Ekstremalnye svoistva klassa $S(w_0)$”, Tr. Tomskogo un-ta., 169 (1963), 24–58 | Zbl
[7] A. Pfluger, “The Fekete-Szegö inequality by a variational method”, Ann. Acad. Sci. Fenn., Ser. A.I. Math., 10 (1985), 447–454 | DOI | MR | Zbl
[8] A. Pfluger, “On the Functional $a_3-\lambda a_2^2$ in the Class $S$”, Complex Variables, 10 (1988), 83–95 | Zbl
[9] H. Siejka, O. Tammi, “On maximizing a homogeneous functional in the class of bounded univalent functions”, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 6 (1981), 273–288 | DOI | MR | Zbl
[10] J. A. Hummel, “Extremal problems in the class of starlike functions”, Proc. Amer. Math. Soc., 11:5 (1960), 741–749 | DOI | MR | Zbl
[11] R. R. London, “Fekete-Szegö inequalities for close-to-convex functions”, Proc. Amer. Math. Soc., 117 (1993), 947–950 | MR | Zbl
[12] B. S. Mehrok, Singh H., “A Coefficient Inequality for a Certain Class of Analytic Functions”, Int. Journal of Math. Analysis, 5:7 (2011), 311–318 | MR | Zbl
[13] B. Bhowmik, S. Ponnusamy, K.-J. Wirths, “On the Fekete–Szegö problem for concave univalent functions”, J Math. Anal. Appl., 373 (2011), 432–438 | DOI | MR | Zbl
[14] Q. Xu, T. Liu, X. Liu, “Fekete and Szegö problem in one and higher dimensions”, Sci. China Math., 61 (2018), 1775–1788 | DOI | MR | Zbl
[15] N. A. Lebedev, Ob oblastyakh znachenii funktsionalov, zadannykh na klassakh analiticheskikh funktsii, Doktorskaya dissertatsiya, Leningradskii universitet, 1955
[16] Ya. V. Borisova, I. A. Kolesnikov, S. A. Kopanev, “O malykh variatsionnykh formulakh”, Vestn. Tomsk. gos. un–ta. Matem. i mekh., 2017, no. 49, 5–15
[17] I. A. Aleksandrov, I. A. Kolesnikov, S. A. Kopanev, L. S. Kopaneva, Metod vnutrennikh variatsii v teorii odnolistnykh otobrazhenii, Izd-vo Tom. un-ta, Tomsk, 2017
[18] B. A. Fuks, V. I. Levin, Funktsii kompleksnogo peremennogo i nekotorye ikh prilozheniya. Spetsialnye glavy., Izd-vo tekhniko-teoreticheskoi lit-ry, Moskva, 1951