Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 127-132
Cet article a éte moissonné depuis la source Math-Net.Ru
V.A. Bykovskii constructed three new periodic ultradiscrete transformations of the plane In addition to the two well-known. In his work, only the idea of proving these statements was proposed. We give a complete and detailed proof of them for sequences with periods 5, 7, 8, 9.
@article{DVMG_2021_21_2_a0,
author = {M. O. Avdeeva},
title = {Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {127--132},
year = {2021},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a0/}
}
M. O. Avdeeva. Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 127-132. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a0/
[1] A. Nobe, “Ultradiscrete QRT maps and tropical elliptic curves”, J.Journal of Physics A: Mathematical and Theoretical, 41:12 (2008), 125205, 12 pp. | DOI | MR | Zbl
[2] V. A. Bykovskii, “Periodicheskie ultradispersnye preobrazovaniya ploskosti”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 500 (2021), 23–25
[3] A. P. Fordy, A. Hone, “Symplectic Maps from Cluster Algebras”, SIGMA, 7 (2011), 091, 12 pp. | Zbl