Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 127-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

V.A. Bykovskii constructed three new periodic ultradiscrete transformations of the plane In addition to the two well-known. In his work, only the idea of proving these statements was proposed. We give a complete and detailed proof of them for sequences with periods 5, 7, 8, 9.
@article{DVMG_2021_21_2_a0,
     author = {M. O. Avdeeva},
     title = {Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a0/}
}
TY  - JOUR
AU  - M. O. Avdeeva
TI  - Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 127
EP  - 132
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a0/
LA  - ru
ID  - DVMG_2021_21_2_a0
ER  - 
%0 Journal Article
%A M. O. Avdeeva
%T Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 127-132
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a0/
%G ru
%F DVMG_2021_21_2_a0
M. O. Avdeeva. Periodic ultradiscrete transformations of the plane with periods of 5, 7, 8, 9. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 127-132. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a0/

[1] A. Nobe, “Ultradiscrete QRT maps and tropical elliptic curves”, J.Journal of Physics A: Mathematical and Theoretical, 41:12 (2008), 125205, 12 pp. | DOI | MR | Zbl

[2] V. A. Bykovskii, “Periodicheskie ultradispersnye preobrazovaniya ploskosti”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 500 (2021), 23–25

[3] A. P. Fordy, A. Hone, “Symplectic Maps from Cluster Algebras”, SIGMA, 7 (2011), 091, 12 pp. | Zbl