@article{DVMG_2021_21_1_a8,
author = {A. G. Podgaev and T. D. Kulesh},
title = {Compactness theorems for problems with unknown boundary},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {105--112},
year = {2021},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a8/}
}
A. G. Podgaev; T. D. Kulesh. Compactness theorems for problems with unknown boundary. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a8/
[1] A. G Podgaev, “On Relative Compactness Set of Abstract Function from Scale of the Banach Spaces”, Functional Analysis, Approximation Theory and Numerical Analysis, Word Scientific Publishing Co, 1994, 219–236 | MR | Zbl
[2] J. Aubin, “Un theoreme de compacte”, Compt. Rend. Acad. Sci. (Paris), 256 (1963), 5042–5044 | MR | Zbl
[3] J. Simon, “Compact Sets in the $L_p(0,T;B)$”, Annalidi Matematica pura ed applicata (IV), CXLVI (1987), 65–96 | MR | Zbl
[4] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67 (109):4 (1965)
[5] A. G. Podgaev, “Razreshimost osesimmetrichnoi zadachi dlya nelineinogo parabolicheskogo uravneniya v oblastyakh s netsilindricheskoi ili neizvestnoi granitsei. I”, Chelyab. fiz.-matem. zhurnal., 5:1 (2020), 44–55 | MR
[6] S. V. Popov, A. I. Shadrina, “Kontaktnye parabolicheskie kraevye zadachi dlya uravnenii vtorogo poryadka”, Matematicheskie zametki YaGU, 16:2 (2009), 66–77 | Zbl
[7] A. M. Meirmanov, Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR