The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 71-88

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v}(\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1\max (r,s)\le \min(p,q)\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0\alpha\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
@article{DVMG_2021_21_1_a6,
     author = {E. N. Lomakina and M. G. Nasyrova and V. V. Nasyrov},
     title = {The estimates of the approximation numbers of the {Hardy} operator acting in the {Lorenz} spaces in the case $\max(r,s)\leq q$},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/}
}
TY  - JOUR
AU  - E. N. Lomakina
AU  - M. G. Nasyrova
AU  - V. V. Nasyrov
TI  - The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 71
EP  - 88
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/
LA  - ru
ID  - DVMG_2021_21_1_a6
ER  - 
%0 Journal Article
%A E. N. Lomakina
%A M. G. Nasyrova
%A V. V. Nasyrov
%T The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 71-88
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/
%G ru
%F DVMG_2021_21_1_a6
E. N. Lomakina; M. G. Nasyrova; V. V. Nasyrov. The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/