The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 71-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v}(\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1\max (r,s)\le \min(p,q)\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0\alpha\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
@article{DVMG_2021_21_1_a6,
     author = {E. N. Lomakina and M. G. Nasyrova and V. V. Nasyrov},
     title = {The estimates of the approximation numbers of the {Hardy} operator acting in the {Lorenz} spaces in the case $\max(r,s)\leq q$},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/}
}
TY  - JOUR
AU  - E. N. Lomakina
AU  - M. G. Nasyrova
AU  - V. V. Nasyrov
TI  - The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 71
EP  - 88
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/
LA  - ru
ID  - DVMG_2021_21_1_a6
ER  - 
%0 Journal Article
%A E. N. Lomakina
%A M. G. Nasyrova
%A V. V. Nasyrov
%T The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 71-88
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/
%G ru
%F DVMG_2021_21_1_a6
E. N. Lomakina; M. G. Nasyrova; V. V. Nasyrov. The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/

[1] C. Bennett, R. Sharpley, Interpolation of Operators, v. 129, Pure and Applied Mathematics, Academic Press, Boston, 1988 | MR | Zbl

[2] A. Pich, Operatornye idealy, Mir, M., 1982 | MR

[3] S. Barza, V. Kolyada V., J. Soria, “Sharp constants related to the triangle inequality in Lorentz spaces”, Trans. Amer. Math. Soc., 361:10 (2009), 5555–5574 | DOI | MR | Zbl

[4] H. König, Eigenvalue distribution of compact operators, Operator Theory: Advances and Applications, 16, Birkhäuser Verlag, Basel, 1986 | DOI | MR | Zbl

[5] D. E. Edmunds, W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1987 | MR | Zbl

[6] B. Carl, I. Stephani, Entropy, compactness and the approximation of operators, Cambridge Univ. Press., Cambridge, 1990 | MR | Zbl

[7] D. E. Edmunds, W. D. Evans, D. J. Harris, “Approximation numbers of certain Volterra integral operators”, London Math. Soc. (2), 38 (1988), 471–489 | DOI | MR

[8] D. E. Edmunds, V. Stepanov, “On singular numbers of certain Volterra integral operators”, J. Funct. Anal., 134 (1995), 222–246 | DOI | MR | Zbl

[9] D. E. Edmunds, W. D. Evans, D. J. Harris, “Two-sided estimates of the approximation numbers of certain Volterra integral operators”, Studia Math. (1), 124 (1997), 59–80 | MR | Zbl

[10] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy–type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | MR | Zbl

[11] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Am. Math. Soc., 745 (2002), 1–87 | MR | Zbl

[12] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc. (2), 53 (1996), 369–382 | DOI | MR | Zbl

[13] E. Lomakina, V. Stepanov, “On the Hardy-type integral operators in Banach function spases”, Publicacions Matematiques, 42 (1998), 165–194 | DOI | MR | Zbl

[14] E. N. Lomakina, “Ob otsenkakh norm operatora Khardi, deistvuyuschego v prostranstvakh Lorentsa”, Dalnevostoch. matem. zhurn., 20:2 (2020), 191–211 | MR | Zbl

[15] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl

[16] A. Pietsch, “$s$-Numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | DOI | MR | Zbl