Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_1_a6, author = {E. N. Lomakina and M. G. Nasyrova and V. V. Nasyrov}, title = {The estimates of the approximation numbers of the {Hardy} operator acting in the {Lorenz} spaces in the case $\max(r,s)\leq q$}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {71--88}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/} }
TY - JOUR AU - E. N. Lomakina AU - M. G. Nasyrova AU - V. V. Nasyrov TI - The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$ JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 71 EP - 88 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/ LA - ru ID - DVMG_2021_21_1_a6 ER -
%0 Journal Article %A E. N. Lomakina %A M. G. Nasyrova %A V. V. Nasyrov %T The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$ %J Dalʹnevostočnyj matematičeskij žurnal %D 2021 %P 71-88 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/ %G ru %F DVMG_2021_21_1_a6
E. N. Lomakina; M. G. Nasyrova; V. V. Nasyrov. The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case $\max(r,s)\leq q$. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a6/
[1] C. Bennett, R. Sharpley, Interpolation of Operators, v. 129, Pure and Applied Mathematics, Academic Press, Boston, 1988 | MR | Zbl
[2] A. Pich, Operatornye idealy, Mir, M., 1982 | MR
[3] S. Barza, V. Kolyada V., J. Soria, “Sharp constants related to the triangle inequality in Lorentz spaces”, Trans. Amer. Math. Soc., 361:10 (2009), 5555–5574 | DOI | MR | Zbl
[4] H. König, Eigenvalue distribution of compact operators, Operator Theory: Advances and Applications, 16, Birkhäuser Verlag, Basel, 1986 | DOI | MR | Zbl
[5] D. E. Edmunds, W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1987 | MR | Zbl
[6] B. Carl, I. Stephani, Entropy, compactness and the approximation of operators, Cambridge Univ. Press., Cambridge, 1990 | MR | Zbl
[7] D. E. Edmunds, W. D. Evans, D. J. Harris, “Approximation numbers of certain Volterra integral operators”, London Math. Soc. (2), 38 (1988), 471–489 | DOI | MR
[8] D. E. Edmunds, V. Stepanov, “On singular numbers of certain Volterra integral operators”, J. Funct. Anal., 134 (1995), 222–246 | DOI | MR | Zbl
[9] D. E. Edmunds, W. D. Evans, D. J. Harris, “Two-sided estimates of the approximation numbers of certain Volterra integral operators”, Studia Math. (1), 124 (1997), 59–80 | MR | Zbl
[10] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten von Neumann norms of the Hardy–type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000, 153–187 | MR | Zbl
[11] M. A. Lifshits, W. Linde, “Approximation and entropy numbers of Volterra operators with application to Brownian motion”, Mem. Am. Math. Soc., 745 (2002), 1–87 | MR | Zbl
[12] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc. (2), 53 (1996), 369–382 | DOI | MR | Zbl
[13] E. Lomakina, V. Stepanov, “On the Hardy-type integral operators in Banach function spases”, Publicacions Matematiques, 42 (1998), 165–194 | DOI | MR | Zbl
[14] E. N. Lomakina, “Ob otsenkakh norm operatora Khardi, deistvuyuschego v prostranstvakh Lorentsa”, Dalnevostoch. matem. zhurn., 20:2 (2020), 191–211 | MR | Zbl
[15] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl
[16] A. Pietsch, “$s$-Numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | DOI | MR | Zbl